HOMOTOPY FOR CELLULAR SET-VALUED FUNCTIONS

T. R. BRAHANA,1 M. K. FORT, JR.,2 AND WALT G. HORSTMAN3

1. Introduction. A. Granas asked the following question. If F is an upper semi-continuous set-valued function on a compact metric space M such that the image of each point of M is a proper subcontinuum of S^n, then is F "homotopic" to a single-valued continuous function? It was pointed out that care must be used in the definition of homotopy of set-valued functions, since the first natural candidate puts all upper semi-continuous set-valued functions into one class. In [3] and [2] studies were made of homotopies of set-valued functions subject to the restriction that $H(x, t)$ be acyclic (with respect to homology over \mathbb{Z}_2) for each $(x, t) \in M \times I$.

In this paper the homotopy problem is solved for those upper semi-continuous functions F for which each $F(x)$ is a cellular subset of S^n. In particular, the class of cellular upper semi-continuous set-valued functions is partitioned into equivalence classes by the relation of cellular homotopy, each class contains single-valued continuous functions, and two single-valued continuous functions are in the same class if and only if they are homotopic in the usual sense.

A selection theorem which seems to be different from those discussed in the literature is proved in §2. It is shown that if F is upper semi-continuous on M and $F(x)$ is a cellular subset of S^n for each $x \in M$, then there exists a continuous function $g: M \to S^n$ such that $g(x) \in S^n - F(x)$ for each $x \in M$. In addition to being the main tool used in the construction of the homotopies, this selection theorem is of interest in itself.

2. The selection theorem. A subset A of S^n is cellular if and only if there exists a sequence $E_1 \supset E_2 \supset E_3 \cdots$ of topological n-cells such that $A = \bigcap_{k=1}^{\infty} E_k$ and, for each k, $A \subset \text{interior } E_k$.

Let M be an m-dimensional compact metric space and let F be a set-valued function on M such that:

(i) for each $x \in M$, $F(x)$ is a cellular subset of S^n, and

(ii) F is upper semi-continuous.

A covering pair for F and M is an ordered pair (G, D) such that:

Received by the editors December 23, 1963.

1 Supported by the National Science Foundation research grant G-10096.

2 Professor Fort died on August 2, 1964. Research had been supported by the National Science Foundation research grant G-23790.

3 Supported by the National Science Foundation research grant G-10096.
(i) G is a finite open covering of M,
(ii) D is a function with domain G such that for each $U \in G$, $D(U)$ is a topological n-cell which is contained in S^n, and
(iii) for each $x \in M$, if $x \in U \in G$ then $F(x) \subseteq \text{interior } D(U)$.

Lemma 1. There exists a covering pair.

Proof. For each $x \in M$, there exists a topological n-cell $\Delta(x)$ such that $F(x) \subseteq \text{interior } \Delta(x)$ and $\Delta(x) \subseteq S^n$. For each $x \in M$, there exists a neighborhood $V(x)$ such that if $t \in V(x)$ then $F(t) \subseteq \text{interior } \Delta(x)$. \{ $V(x) | x \in M$ \} is an open covering of M, and, since M is compact, this covering has a finite subcovering $G = \{ V(x_1), \ldots, V(x_k) \}$. We define $D(V(x_j)) = \Delta(x_j)$ for $j = 1, \ldots, k$. It is easy to verify that (G, D) is a covering pair.

Lemma 2. If (G, D) is a covering pair, then there exists a covering pair (G^*, D^*) such that:
(i) G^* is a star refinement of G, and
(ii) if $U \in G$, $U^* \in G^*$ and $U^* \subseteq U$, then $D^*(U^*) \subseteq D(U)$.

Proof. Let λ be the Lebesgue number of the covering G. For each $x \in M$, there is a topological n-cell $\Delta(x)$ such that $F(x) \subseteq \text{interior } \Delta(x)$ and such that if $x \in U \in G$ then $\Delta(x) \subseteq D(U)$. For each $x \in M$, there is a neighborhood $W(x)$ of x such that:
(i) $W(x)$ is contained in the $\lambda/3$-neighborhood of x, and
(ii) if $t \in W(x)$ then $F(t) \subseteq \text{interior } \Delta(x)$. The set \{ $W(x) | x \in M$ \} is an open covering of M and has a finite subcover $G^* = \{ W(x_1), \ldots, W(x_k) \}$. We define $D^*(W(x_j)) = \Delta(x_j)$ for $j = 1, \ldots, k$. It is easy to verify that (G^*, D^*) has the desired properties.

Let F be an upper semi-continuous set-valued function on a compact finite-dimensional metric space M such that, for each $x \in M$, $F(x)$ is a cellular subset of S^n.

Theorem 1. There exists a single-valued continuous function $g: M \to S^n$ such that $g(x) \subseteq S^n - F(x)$ for each $x \in M$.

Proof. Let m be the dimension of M. It follows from Lemmas 1 and 2 that there are covering pairs $(G_0, D_0), \ldots, (G_{2m}, D_{2m})$ such that for each j, $1 \leq j \leq 2m$: (i) G_j is a star refinement of G_{j-1}, and
(ii) if $U_j \subseteq G_j$, $U_{j-1} \subseteq G_{j-1}$ and $U_j \subseteq U_{j-1}$, then $D_j(U_j) \subseteq D_{j-1}(U_{j-1})$.

We choose a finite open covering G of M such that G is of order m, G is a star refinement of G_{2m}, and no proper subset of G covers M. For each integer j, $0 \leq j \leq m$, we define $K_j = \{ x | x \in M$ and x is a member of at most $j+1$ members of G $\}$. Each K_j is a closed subset of M, and $K_m = M$.

For each \(V \in G \) and each integer \(j, 0 \leq j \leq 2m \), we select sets \(\phi_j(V) \in G_j \) such that \(\text{St}(V) \subset \phi_{2m}(V) \) and \(\text{St}(\phi_j(V)) \subset \phi_{j-1}(V) \), for \(1 \leq j \leq 2m \). We define \(D_j(\phi_j(V)) \) for each \(V \in G \) and \(j = 0, \ldots, 2m \).

We are going to define (inductively) for each \(j, 0 \leq j \leq m \), a mapping \(g_j : K_j \to S^n \) such that, for each \(V \in G \),

\[
g_j[V \cap K_j] \subset \text{Cl}[S^n - \Phi_{2j}(V)].
\]

For each \(V \in G \), we choose a point \(p_V \in S^n - \Phi_0(V) \) and define \(g_0(x) = p_V \) for each \(x \in V \cap K_0 \). Since \(V \cap K_0 \) is closed in \(K_0 \) for each \(V \in G \), \(g_0 \) is continuous.

Now suppose \(0 < j \leq m \) and \(g_{j-1} \) has been defined. Let \(\sigma = \{ V_0, \ldots, V_j \} \) be a set of \(j+1 \) distinct members of \(G \) such that \(V_0 \cap \cdots \cap V_j \neq \emptyset \). We define \(H_\sigma = (V_0 \cap \cdots \cap V_j) \cap K_j \) and \(W_\sigma = K_j - \bigcup \{ V | V \in G - \sigma \} \). Then \(W_\sigma \) is closed in \(K_j \) and \(H_\sigma \) is open relative to \(W_\sigma \). The mapping \(g_{j-1} \) is defined on \(W_\sigma - H_\sigma \) and \(W_\sigma - H_\sigma \) is closed relative to \(W_\sigma \). It is easy to see that

\[
g_{j-1}[W_\sigma - H_\sigma] \subset \bigcup_{r=0}^{j} \text{Cl}[S^n - \Phi_{2r-2}(V_r)].
\]

Since \(\phi_{2j-1}(V) \subset \text{St}(\phi_{j-1}(V_r)) \subset \phi_{2j-2}(V_r) \) for \(r = 0, \ldots, j, \Phi_{2j-1}(V_0) \subset \bigcap_{r=0}^{j} \Phi_{2j-2}(V_r) \). Therefore, \(g_{j-1}[W_\sigma - H_\sigma] \subset \text{Cl}[S^n - \Phi_{2j-1}(V_0)] \).

The set \(\text{Cl}[S^n - \Phi_{2j-1}(V_0)] \) is the union of a topological \((n-1)\)-sphere \(\Sigma \) and one of the components of \(S^n - \Sigma \). It is known (see [1]) that such sets are absolute retracts. Since \(\text{Cl}[S^n - \Phi_{2j-1}(V_0)] \) is an absolute retract, we can extend \(g_{j-1} | (W_\sigma - H_\sigma) \) to a mapping \(\psi_\sigma : W_\sigma \to \text{Cl}[S^n - \Phi_{2j-1}(V_0)] \).

Since \(V_r \subset \text{St}(V_0) \) for \(r = 0, \ldots, j \),

\[
\Phi_{2j}(V_r) \subset \text{St}(\phi_{2j}(V_0)) \subset \Phi_{2j-1}(V_0).
\]

Thus \(\Phi_{2j}(V_r) \subset \Phi_{2j-1}(V_0) \) and the range of \(\psi_\sigma \) is contained in \(\text{Cl}[S^n - \Phi_{2j}(V_r)] \) for \(r = 0, \ldots, j \). Thus \(\psi_\sigma [V_r \cap W_r] \subset \text{Cl}[S^n - \Phi_{2j}(V_r)] \) for \(r = 0, \ldots, j \).

If \(\sigma' \) is a different system of \(j+1 \) members of \(G \) and \(W_{\sigma'} \cap W_\sigma \neq \emptyset \), then \(\psi_{\sigma'}[W_{\sigma'} \cap W_\sigma] = \psi_{\sigma}[W_{\sigma'} \cap W_\sigma] = g_{j-1}[W_{\sigma'} \cap W_\sigma] \). It follows that we can piece the mappings \(\psi_\sigma \) and \(g_{j-1} \) together to obtain a mapping \(g_j : K_j \to S^n \). It is obvious that \(g_j[V \cap K_j] \subset \text{Cl}[S^n - \Phi_{2j}(V)] \) for each \(V \in G \).

We define \(g = g_m \). Since \(K_m = M \), \(g \) is a mapping of \(M \) into \(S^n \) such
that \(g[V] \subseteq \text{Cl}[S^n - \Phi_{2m}(V)] \) for each \(V \in G \). If \(x \in V \in G \), then \(x \in \Phi_{2m}(V) \) and, hence, \(F(x) \subseteq \text{interior} \Phi_{2m}(V) \). It follows that if \(x \in M \), then \(g(x) \in S^n - F(x) \).

3. Homotopy for a class of set-valued functions. Let \(M \) be a finite-dimensional compact metric space. We define \(\Gamma(M, S^n) \) to be the set of all upper semi-continuous set-valued functions \(F \) on \(M \) such that for each \(x \in M \), \(F(x) \) is a cellular subset of \(S^n \). We let \(I = [0, 1] \).

Let \(F \) and \(G \) be members of \(\Gamma(M, S^n) \). A function \(H \) is a cellular homotopy relating \(F \) to \(G \) if:

(i) \(H \in \Gamma(M \times I, S^n) \), and

(ii) for all \(x \in M \), \(H(x, 0) = F(x) \) and \(H(x, 1) = G(x) \).

If there exists a cellular homotopy relating \(F \) to \(G \), then we say that \(F \) is homotopic to \(G \) and write \(F \sim G \). The relation \(\sim \) is an equivalence relation and partitions \(\Gamma(M, S^n) \) into equivalence classes which we call cellular homotopy classes.

Let \(F \in \Gamma(M, S^n) \) and let \(f : M \to S^n \) be a (single-valued) continuous function. A function \(H \) is a special homotopy relating \(F \) to \(f \) if:

(i) \(H \) is a cellular homotopy relating \(F \) to \(f \), and

(ii) for all \(x \in M \) and \(0 \leq t \leq 1 \), \(H(x, t) \) is homeomorphic to \(F(x) \).

If \(F \) is a single-valued function as well as \(f \), then (ii) implies that \(H \) is single-valued, and since upper semi-continuity is equivalent to continuity for single-valued functions, in this case \(H \) is an ordinary homotopy.

Lemma 3. If \(F \in \Gamma(M, S^n) \), then there exists a single-valued continuous function \(f : M \to S^n \) and a special homotopy \(H \) relating \(F \) to \(f \).

Proof. For each \(p \in S^n \), we define a mapping \(J_p : [S^n - p] \times I \to S^n \) by

\[
J_p(x, t) = \left(-tp + (1 - t)x\right)/\| -tp + (1 - t)x\|
\]

for \(x \in S^n - p \), \(0 \leq t \leq 1 \). \(J_p \) is a pseudo-isotopy, since the map \(\phi_t \) defined by \(\phi_t(x) = J_p(x, t) \) is a homeomorphism on \(S^n - p \) if \(0 \leq t < 1 \), \(\phi_0 \) is the identity mapping on \(S^n - p \), and \(\phi_1 \) is the constant map which takes \(S^n - p \) into \(-p \).

By Theorem 1, there is a mapping \(g : M \to S^n \) such that \(g(x) \subseteq S^n - F(x) \) for each \(x \in M \). We define \(f(x) = -g(x) \) and

\[
H(x, t) = \{J_{g(x)}(y, t) \mid y \in F(x)\}
\]

for \(x \in M \) and \(0 \leq t \leq 1 \). Obviously, \(f \) is a continuous function on \(M \) into \(S^n \), and it is easy to verify that \(H \) is a special homotopy relating \(F \) to \(f \).
Theorem 2. Each cellular homotopy class of $\Gamma(M, S^n)$ contains a single-valued continuous function $f: M \to S^n$.

Proof. This result follows immediately from Lemma 3 and the fact that special homotopies are cellular homotopies.

Our final theorem shows that the notion of cellular homotopy which we have defined for $\Gamma(M, S^n)$ is a true extension of the usual notion of homotopy for single-valued functions.

Theorem 3. If f_0 and f_1 are single-valued continuous functions on M into S^n and $H \in \Gamma(M \times I, S^n)$ is a cellular homotopy relating f_0 to f_1, then there exists a single-valued homotopy $h: M \times I \to S^n$ which relates f_0 to f_1 in the usual sense.

Proof. We apply Lemma 3 (replacing M by $M \times I$ and F by H) to obtain a single-valued continuous function $\phi: M \times I \to S^n$ and a special homotopy $K \in \Gamma((M \times I) \times I, S^n)$ relating H to ϕ. Now, for $(x, t) \in M \times I$, we define

$$h(x, t) = \begin{cases} K(x, 0, 3t) & \text{if } 0 \leq t \leq 1/3, \\ K(x, 3t - 1, 1) & \text{if } 1/3 \leq t \leq 2/3, \\ K(x, 1, 3 - 3t) & \text{if } 2/3 \leq t \leq 1. \end{cases}$$

If $0 \leq t < 1/3$, then $h(x, t) = K(x, 0, 3t)$ is homeomorphic to $K(x, 0, 0) = H(x, 0) = f_0(x)$ and, hence, is a one-point set. Likewise, if $2/3 < t \leq 1$, then $h(x, t)$ is a one-point set. If $1/3 \leq t \leq 2/3$, then $h(x, t) = K(x, 3t - 1, 1) = (x, 3t - 1)$ and since ϕ is single-valued, $h(x, t)$ is a one-point set. Thus h is a single-valued function on $M \times I$ into S^n.

Since K is upper semi-continuous, h is also upper semi-continuous. Since h is single-valued, this implies that h is continuous.

We have shown that $h: M \times I \to S^n$ is an ordinary single-valued homotopy. Since $h(x, 0) = K(x, 0, 0) = H(x, 0) = f_0(x)$ and $h(x, 1) = K(x, 1, 0) = H(x, 1) = f_1(x)$, h relates f_0 to f_1 in the usual sense.

It should be remarked that it can be shown that the smallest equivalence relation containing both homotopies of single-valued functions and special homotopies is the relation generated by cellular homotopies. The proof is similar to that of Theorem 4.

Bibliography

University of Georgia