ORDER CONVERGENCE AND TOPOLOGICAL CONVERGENCE

RALPH E. DEMARR

In a complete lattice it is possible to define a notion of convergence (for arbitrary nets) known as order convergence (o-convergence); for definitions see [1, p. 59] and [3, p. 65]. As a general rule o-convergence is not a topological convergence; i.e., the lattice cannot be topologized so that nets o-converge if and only if they converge with respect to the topology [2]. It is of interest to know when these two types of convergence coincide. A number of questions could be posed here, but we shall deal only with the question of when a topological space can be suitably embedded in a complete lattice. To make this statement more precise we shall give the following definition.

Definition. A topological space is said to be an O-space if it is homeomorphic to a subset Ω_0 of a complete lattice Ω and if every net in Ω_0 converges (with respect to the topology for Ω_0) to a limit in Ω_0 if and only if it o-converges to this limit. For example, every completely regular Hausdorff space is an O-space because it is homeomorphic to a subset of the direct product of unit intervals and if this direct product is partially ordered componentwise, then it becomes a complete lattice in which o-convergence is the same as convergence with respect to the product topology. In this paper we prove the following theorem.

Theorem. A topological space is an O-space if and only if it is a regular Hausdorff space.

Proof. If X is an O-space, then it is homeomorphic to a subset Ω_0 of a complete lattice Ω, where the topology for Ω_0 has the properties stated in the above definition. Hence, we only need to show that Ω_0 is a regular Hausdorff space. Since limits with respect to o-convergence are unique, Ω_0 is a Hausdorff space. For each nonempty open subset U of Ω_0 define $f(U) = \sup \{ \sigma: \sigma \in U \}$ and $g(U) = \inf \{ \sigma: \sigma \in U \}$. Then define $S(U) = \{ \tau: \tau \in \Omega_0 \text{ and } g(U) \leq \tau \leq f(U) \}$. Since Ω_0 is an O-space, $S(U)$ is closed. It is clear that $U \subseteq S(U)$.

Now let $\sigma_0 \in \Omega_0$ be any point. We now define the directed set D to be the collection of all pairs (U, σ), where $U \subseteq \Omega_0$ is an open neighborhood of σ_0 and $\sigma \subseteq U$. The binary relation $<$ is defined as follows: $(U_1, \sigma_1) < (U_2, \sigma_2)$ iff $U_2 \subseteq U_1$. We will now construct a net in Ω_0 as

Received by the editors May 28, 1964.
follows: for each \(n = (U, \sigma) \in D \) define \(\mu_n = \sigma \). It is clear that the net \(\{ \mu_n : n \in D \} \) converges to \(\sigma_0 \) with respect to the topology for \(\Omega_0 \), hence, it must also \(\sigma \)-converge to \(\sigma_0 \). From the definition of \(\sigma \)-convergence we see that \(\inf \{ f(U) : U \in N(\sigma_0) \} = \sigma_0 = \sup \{ g(U) : U \in N(\sigma_0) \} \), where \(N(\sigma_0) \) denotes the collection of all open neighborhoods \(U \subset \Omega_0 \) of \(\sigma_0 \).

We will use this latter fact to show by contradiction that \(\Omega_0 \) is regular. If \(\Omega_0 \) is not regular then there exists a point \(\sigma_0 \in \Omega_0 \) and an open neighborhood \(V_0 \) \((V_0 \subset \Omega_0) \) of \(\sigma_0 \) such that for every open neighborhood \(U \) of \(\sigma_0 \) we have \(S(U) \cap V_0' \neq \emptyset \). \(V_0' \) denotes the complement of \(V_0 \). Therefore, for each \(U \in N(\sigma_0) \) one may select \(h(U) \in S(U) \cap V_0' \). Now \(\{ h(U) : U \in N(\sigma_0) \} \) is a net and since \(g(U) \leq h(U) \leq f(U) \) for all \(U \in N(\sigma_0) \), this net must \(\sigma \)-converge to \(\sigma_0 \) (recall the results of the previous paragraph). But since \(h(U) \in V_0' \) for all \(U \in N(\sigma_0) \), this net cannot converge to \(\sigma_0 \) with respect to the topology for \(\Omega_0 \). This contradicts the fact that \(\Omega_0 \) is an \(O \)-space; hence, \(\Omega_0 \) must be regular. This completes the proof that every \(O \)-space is a regular Hausdorff space.

Now assume that \(X \) is a regular Hausdorff space. We may assume that \(X \) contains infinitely many points, otherwise all is trivial. Let \(\mathfrak{F} \) be the collection of all closed subsets of \(X \) which contain at least two points. Now define three sets \(\Omega_- \), \(\Omega_0 \), and \(\Omega_+ \) as follows: \(\Omega_- \) and \(\Omega_+ \) are sets of ordered pairs of the form \((-1, E) \) and \((+1, E)\), respectively, where \(E \subset \mathfrak{F} \); \(\Omega_0 \) is the set of ordered pairs of the form \((0, x)\), where \(x \in X \). Then define \(\Omega = \Omega_- \cup \Omega_0 \cup \Omega_+ \). The set \(\Omega \) is partially ordered as follows:

\[
\begin{align*}
(-1, E) & \leq (-1, F) \quad \text{iff} \quad F \subset E, \\
(-1, E) & \leq (0, x) \quad \text{iff} \quad x \in E, \\
(-1, E) & \leq (+1, F) \quad \text{iff} \quad E \cap F \neq \emptyset, \\
(0, x) & \leq (0, y) \quad \text{iff} \quad x = y, \\
(0, x) & \leq (+1, E) \quad \text{iff} \quad x \in E, \\
(+1, E) & \leq (+1, F) \quad \text{iff} \quad E \subset F.
\end{align*}
\]

It is easily shown that \(\leq \) is indeed a partial ordering. It is clear that \((-1, X)\) and \((+1, X)\) are the smallest and largest elements, respectively, in \(\Omega \).

In general, \(\Omega \) is not a lattice, but it can be embedded in a complete lattice \(\overline{\Omega} \) (the MacNeille completion); see [1, p. 58]. By the embedding, we can regard \(\Omega \) as a subset of \(\overline{\Omega} \). Hence, \(\Omega_0 \) can be regarded as a subset of \(\overline{\Omega} \). We shall topologize \(\Omega_0 \) so that it is homeomorphic to \(X \); this can be done directly since there is a natural one-to-one correspondence between \(X \) and \(\Omega_0 \).
We will now show that a net in Ω_0 converges with respect to the topology for Ω_0 if and only if it σ-converges. Let \(\{\sigma_n : n \in D\} \) be a net in Ω_0 which converges to σ with respect to the topology for Ω_0. Since Ω_0 is a regular Hausdorff space, the collection $N(\sigma)$ of closed neighborhoods of σ is a base for the neighborhood system at σ. Now if the singleton $\{\sigma\}$ is open, then there exists $k \in D$ such that $\sigma_n = \sigma$ for all $n > k$; hence, the net σ-converges to σ. On the other hand, if the singleton $\{\sigma\}$ is not open, then (putting $\sigma = (0, x)$) we have $\inf \{(+1, E) : E \subseteq N(x)\} = \sup \{(-1, E) : E \subseteq N(x)\} = (0, x) = \sigma$, where $N(x)$ is the collection of closed neighborhoods of $x \in X$. Hence, for each $E \subseteq N(x)$ there exists $k \in D$ such that $(-1, E) \subseteq \sigma_n \subseteq (+1, E)$ for all $n > k$. Therefore, the net σ-converges to σ.

Now let $\{\sigma_n : n \in D\}$ be a net in Ω_0 which does not converge to σ with respect to the topology for Ω_0. Hence, there must exist a set $E \subseteq \Omega$ which does not contain x, where $(0, x) = \sigma$, such that $x_n \in E$ co-finally $(\sigma_n = (0, x_n))$. Hence, $\tau_k = \inf \{\sigma_n : n > k\} \leq (+1, E)$ for all $k \in D$. Therefore, $\sup \{\tau_k : k \in D\} \leq (+1, E)$ which means that $\sup \{\tau_k : k \in D\} \neq \sigma$ (recall the definition of the partial order in Ω and the fact that x does not belong to E). This in turn means that the net does not σ-converge to σ. Q.E.D.

References

University of Washington