CONCERNING THE COMMUTATOR
SUBGROUP OF A RING

W. E. BAXTER

This paper considers two independent results concerning \([A, A]\),
the commutator subgroup of an associative ring \(A\), and generated by
all elements \([a, b] = ab - ba\), where \(a\) and \(b\) are in \(A\). The first of these
results sharpens those of \([3]\), while the second uses the techniques
of \([6]\) to generalize \([1]\) and \([4]\). These results are stated as

Theorem 1. Let \(A\) be a simple associative ring; then either \(A\) is a
field or \([A, A]^2\), the subgroup generated by all products \(ab\) where \(a\) and
\(b\) are in \([A, A]\), is \(A\).

Theorem 2. Let \(A\) be an associative ring such that \([A, A]^7\), the sub-
ring generated by \([A, A]\), is \(A\) and let \(U\) be a Lie ideal of \([A, A]\), then
either \([[U, U], U]] = (0)\) or there exists a nontrivial (two-sided) ideal, \(R,
of A\) such that \(R \subseteq U^\prime\).

Proof of Theorem 1. Assume \(A\) is not 4-dimensional over \(Z\), its
center and a field of characteristic 2; if so, then a direct verification
shows that \([A, A]^2 = A\). Let \(x, y \in [A, A]\) and \(a \in A\), then \([x, y]a
= [x, ya] + y[a, x]\). Thus,

\[(xy - yx)A \subseteq [A, A] + [A, A]^3\]

for all \(x, y \in [A, A]\).

Now for any \(b \in A\), \(b[x, y]a = [b, [x, y]a] + [x, y]ab\) and hence,

\[A(xy - yx)A \subseteq [A, A] + [A, A]^2\]

for all \(x, y \in [A, A]\).

Therefore either (a) \([[A, A], [A, A]] = (0)\), or (b) \(A = [A, A] + [A, A]^2\).
(a) implies by \([4]\) and \([1]\) that \(A\) is a field, and (b) implies
\([A, A]^2 = A\) by the use of the following lemma.

Lemma 1 (Herstein). Let \(A\) be a simple associative ring, neither a
field nor 4-dimensional over its center, \(Z\), a field of characteristic 2. Then
\([A, A] \subseteq [A, A]^3\).

Proof. \([A, A]^2\) is obviously a Lie ideal of \(A\) and hence by \([3]\)
either is contained in \(Z\) or contains \([A, A]\). We now show that
\([A, A]^2 \subseteq Z\) leads to a contradiction. Let \(a, b, c \in A\); then \(u = [a, b][a, c]\) and
\(ua = [a, b][a, ca]\) are in \(Z\). Now if \(u \neq 0\), then the latter implies
that \(a \in Z\) and hence \(u = 0\), which is false. Thus, for all \(a, b, c \in A\),

Presented to the Society, August 27, 1964 under the title Concerning the com-
mutator subgroup of a simple ring; received by the editors April 10, 1964.
\([a, b][a, c]=0\). An easy verification shows that this leads to \(a \in Z\), a contradiction. Thus the desired conclusion.

Proof of Theorem 2. We assume that \([A, A]^\perp = A\). To prove the theorem we need the following lemma.

Lemma 2. Let \(U\) be a Lie ideal of \([A, A]\). Then \(I = I(U) = \{u \in U^- | au \in U^- \text{ for all } a \in A\}\) is an ideal of \(A\) with the property that it contains every ideal of \(A\) which is a subset of \(U^-\).

Proof. The latter statement is obvious from the definition of \(I\). It is also evident that \(I\) is a right ideal. Let \(b \in [A, A], a \in A,\) and \(u \in I.\) Then, \(b(ua) - (ua)b \in U^-\), and \(bu - ub \in U^-\) which implies that \([A, A]^\perp \subseteq I.\) Thus, for all \(n \geq 1, [A, A]^n[A, A]^n I \subseteq I\) and hence \(AI \subseteq I.\) So, \(I\) is an ideal of \(A.\) (The lemma also holds with \(U\) replacing \(U^-\) everywhere in the definition of \(I.\))

We are now in a position to prove Theorem 1. Suppose \([[U, U, U]] \neq \emptyset\); then there exists \(x \in [U, U], y \in U\) such that \(xy - yx \neq 0.\) Since \([[U, U], A] \subseteq [U, [U, A]] \subseteq U,\) we have \([x, y] \in U.\) Also, \([x, y]a = [x, ya] + y[x, a]\) for all \(a \in A.\) By the previous remark, \([x, ya]\) and \([x, a]\) are in \(U\) and thus \([x, y]a \in U^-\) for all \(a \in A.\) Thus, \(I \neq \emptyset,\) and by Lemma 2, the theorem is proved.

This theorem can be strengthened to Theorem 3 for certain rings using an argument similar to [3] and the following lemma.

Lemma 3 [5]. If a ring \(A\) has no nonzero right ideal, \(J,\) with \(a^n = 0\) for all \(a \in J, n\) fixed, then \(A\) has a nonzero nilpotent (two-sided) ideal.

Theorem 3. Let \(A\) be a ring with no nilpotent ideals and such that \(2x = 0\) implies \(x = 0.\) Then either \(U^-\) contains a nontrivial ideal of \(A\) or \([U, U] \subseteq Z,\) the center of \(A.\)

Proof. We have seen that \([x, y] \in I\) for all \(x \in [U, U], y \in U.\) Thus, either \(U^-\) contains a nontrivial ideal of \(A\) or \([x, y] = 0\) for all \(x \in [U, U], y \in U.\) If the latter holds, then for all \(a \in A, [x, [x, a]] = 0.\) Setting \(a = bc\) and expanding the resulting expression, we obtain \(2[x, b][x, c] = 0\) for all \(b, c \in A\) which yields, using the hypothesis,

\[
\langle x, b \rangle^2 = 0 \quad \text{for all } x \in [U, U], b \in A. \tag{1}
\]

Suppose \([x, a] = 0, x \in [U, U],\) and for all \(a \in [A, A];\) then, since \([A, A]^\perp = A, x \in Z.\) Thus, assume that \(y = [x, b] \neq 0\) for some \(b \in [A, A].\) Then, \(y \in [U, U]\) and from (1) we have

\[
y^2 = 0 \quad \text{and} \quad [y, d]^2 = 0 \quad \text{for all } d \in A. \tag{2}
\]

Multiply (2) on the left by \(y\) and on the right by \(d\) and obtain \((yd)^2 = 0.\) Thus \(yA\) is a right ideal satisfying identity of Lemma 3. If \(yA \neq \emptyset,\)
then we have a contradiction, while \(yA = (0) \) implies \(A \) being simple, that \(y = 0 \), which also is a contradiction. Thus we have shown
\[U, U \subset Z. \]

This result indeed generalizes the work of \([1]\) and \([4]\).

Theorem 4. If \(A \) is simple (then \([A, A]^* = A\)) and \(U \) is a proper Lie ideal of \([A, A]\), then \(U \) is contained in the center of \(A \) except where \(A \) is of characteristic 2 and 4-dimensional over \(Z \), a field of characteristic 2.

Proof. Define \([U, U] = U^{(1)}\) and \(U^{(n+1)} = [U^{(n)}, U^{(n)}]\) for all \(n \geq 1 \). Then, since \(A \) is simple, it has no nonzero nilpotent ideals. Thus, except in characteristic 2, \([U, U] \subset Z\) or \(U^* = A \). If the former, then Theorems 7 and 9 of \([4]\), in the case not characteristic 3, and Lemma 3 of \([1]\) in this case implies \(U \subset Z \). Now, by these same results, if \(U^{(2)} \subset Z \), then \(U \subset Z \). Hence \(U^{(2)} = A \). Thus, by Lemma 9 of \([2]\) we have \([U^{(2)}, A] = [A, A]\), which contradicts \(U \) being proper. Lemma 1 of \([1]\) yields the result when \(A \) is of characteristic 2.

The author wishes to express his thanks to the referee, I. N. Herstein, for his suggestions.

References

5. ———, Topics in ring theory, Univ. of Chicago, Chicago, Ill., 1965.

University of Delaware