SECOND ORDER LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS

J. J. GERGEN AND F. G. DRESSEL

1. Introduction. It was noted by Pinney [2] that the solution of the nonlinear differential equation \(y'' + p(x)y' + cy^{-3} = 0 \), \(c \) constant, can be written in the form \(y = (u_1^2 - u_2^2)^{1/2} \), where \(u_1(x), u_2(x) \) are appropriately chosen solutions of the linear equation \(u'' + p(x)u = 0 \). This result led Thomas [3] to ask: What equations of order \(n \) have general solutions expressible in the form \(y = F(u_1, \cdots, u_n) \), where \(u_1, \cdots, u_n \) constitute a variable set of solutions of a linear equation? Thomas answered this question when the underlying linear equation is of the first order, \(u' + pu = q \). He also gave the answer for homogeneous second order equations, \(u'' + pu' + qu = 0 \), when \(F \) depends only on one \(u \), or when \(F \) is homogeneous of nonzero degree in two \(u \)’s. Using the theory of passive partial differential equations, Herbst [1] removed these restrictions, obtaining the following general theorem.

Theorem 1. If \(u_1(x), u_2(x) \) are variable independent solutions with Wronskian \(w \) of the linear equation

\[(1.1) u'' = w'w^{-1}u' + qw,\]

where \(w(x), q(x) \) are arbitrarily prescribed functions, then the equation

\[(1.2) y'' = w'w^{-1}y' + f(y, y', w, q)\]

has general solution \(y = F(u_1, u_2) \) if, and only if, \(f \) has the form

\[(1.3) f = qZ(y) + A(y)(y')^2 + C(y)w^2,\]

where \(Z, A, C \) satisfy

\[(1.4) Z' - AZ = 1, \quad ZC + (3 - AZ)C = 0.\]

Herbst’s theorem determines the form of \(f \). In Herbst’s analysis, however, \(F \) is determined only as a solution of a system of four partial differential equations. The purpose of this paper is to give a simple characterization of \(F \). On the basis of information obtained a method is developed for the solution of (1.2) when \(f \) has form (1.3) and \(Z, A, C \) satisfy (1.4).

Received by the editors April 23, 1964.

1 This research was supported by the United States Air Force under grants AFOSR 61-51 and 62-162 monitored by the Air Force Office of Scientific Research.

767
2. Main result. For the determination of F only a limited class of linear equations (1.1) is needed, namely, the class for which w and q are constants, $w \neq 0$. Our main result is as follows.

Theorem 2. Suppose that $f(y, y', w, q) \in C$ on a domain $R = \{(y, y', w, q) \mid m < y < M\}$, that

\[\xi(y) = f(y, 0, 0, 1) \neq 0, \quad m < y < M, \]

and that $F(u_1, u_2) \in C'$ and $m < F < M$ on a domain V. Suppose further that for arbitrary constants $w \neq 0$ and q, if $u_1(x), u_2(x)$ are solutions of (1.1) with Wronskian w such that $(u_1, u_2) \in V$ for x on an interval I, then $y = F(u_1, u_2)$ satisfies (1.2) on I. Under these conditions, if $m < \eta < M$, then F can be written

\[F = \Phi(\omega^{1/2}), \quad (u_1, u_2) \in V, \]

where $\omega(u_1, u_2)$ is a homogeneous polynomial of degree 2, positive in V, and Φ is the inverse of

\[\phi(y) = \exp \left\{ \int_{\eta}^{y} \xi^{-1}(t) \, dt \right\}, \quad m < y < M. \]

The proof is based on the uniqueness property of solutions of differential equations. Knowledge of the form (1.3) of f is not required. We observe that in the Pinney case $\omega = u_1^2 - u_2^2$ and $\Phi(y) = y$.

Proof. We show first that

\[L(u_1, u_2) = u_1 F_1(u_1, u_2) + u_2 F_2(u_1, u_2) = \xi(F(u_1, u_2)), \quad (u_1, u_2) \in V, \]

where $F_i = \partial F/\partial u_i$, $i = 1, 2$. Let (v_1, v_2) be a point of V other than the origin. Let v'_1, v'_2 be arbitrarily chosen so that $w = v'_1 v'_2 - v_2 v_1' \neq 0$. Let $u_1(x), u_2(x)$ be the solution on $(-\infty, \infty)$ of $u'' = u$ with initial values $u_1(0) = v_1, u'_1(0) = v'_1$. Then u_1, u_2 have Wronskian w, and $(u_1, u_2) \in V$ for x on an interval I containing $x = 0$. Hence, by hypothesis, $y = F(u_1, u_2)$ satisfies $y'' = f(y, y', w, 1)$ on I. Differentiating y twice, and placing $x = 0$ in the final equation, we get

\[v_1 F_1 + v_2 F_2 + F_{11}(v'_1)^2 + 2 F_{12} v'_1 v'_2 + F_{22}(v'_2)^2 = f(F, v_1 F_1 + v_2 F_2, w, 1), \]

where F, F_i, F_{ij} are evaluated at (v_1, v_2). With v_1, v_2 fixed we can let $v'_1, v'_2 \to 0$ in (2.5), to obtain $L(v_1, v_2) = f(F(v_1, v_2), 0, 0, 1)$. Hence, (2.4) holds save possibly at the origin. We observe, however, that the origin cannot be a point of V. Otherwise, by continuity, we would have $\xi(F(0, 0)) = L(0, 0) = 0$, contrary to (2.1).

Now let P_0: (p_1, p_2) be a fixed point in V. Let V_0 be an open disk in
V having center at P_0. We prove that there exist constants a_0, b_0, c_0, not all zero, such that

$$
(2.6) \quad (b_0u_1 + c_0u_2)F_1(u_1, u_2) - (a_0u_1 + b_0u_2)F_2(u_1, u_2) = 0, \quad (u_1, u_2) \in V_0.
$$

By (2.1) and (2.4), the gradient of F is different from zero at P_0. Accordingly, there are functions $\lambda_i(s), i = 1, 2$, of class C^∞ on an interval $|s| < \sigma$, where $0 < \sigma$, such that $\lambda_i(0) = v_i^0$, $0 < (\lambda_i'(0))^2 + (\lambda_i''(0))^2$, and

$$
(2.7) \quad (\lambda_1, \lambda_2) \in V_0, \quad F(\lambda_1, \lambda_2) = F(v_1^0, v_2^0), \quad |s| < \sigma.
$$

Let (v_1, v_2) be a second point of V_0 such that $w = v_1^0v_2 - v_2^0v_1 \neq 0$. Since $L(\lambda_1(s), \lambda_2(s)) \neq 0$, the equation

$$
(2.8) \quad \begin{pmatrix}
F_1(\lambda_1, \lambda_2) & F_2(\lambda_1, \lambda_2) \\
-\lambda_2 & \lambda_1
\end{pmatrix}
\begin{pmatrix}
z_1 \\
z_2
\end{pmatrix}
= \begin{pmatrix}
F_1(v_1^0, v_2^0) & F_2(v_1^0, v_2^0) \\
-0 & -v_2^0
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
$$

admits for each s on $(-\sigma, \sigma)$, a unique solution $z_s = z_s(s)$. From (2.4) and (2.7) we have

$$
(2.9) \quad L(\lambda_1, \lambda_2) = L(v_1^0, v_2^0), \quad |s| < \sigma.
$$

Hence,

$$
(2.10) \quad \begin{pmatrix}
z_1(s) \\
z_2(s)
\end{pmatrix}
= \begin{pmatrix}
\alpha(s) & \beta(s) \\
\gamma(s) & \delta(s)
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix},
$$

where

$$
(2.11) \quad L(v_1^0, v_2^0) \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
= \begin{pmatrix}
\lambda_1 & -F_2(\lambda_1, \lambda_2) \\
\lambda_2 & F_2(\lambda_1, \lambda_2)
\end{pmatrix}
\begin{pmatrix}
F_1(v_1^0, v_2^0) & F_2(v_1^0, v_2^0) \\
-0 & -v_2^0
\end{pmatrix}.
$$

We note that $z_s = v_s$ for $s = 0$. Hence, for $|s|$ sufficiently small, $|s| < \sigma_1$, say, where $0 < \sigma_1 \leq \sigma$, we have $(z_1(s), z_2(s)) \in V_0$.

Suppose for the moment s held fast on $(-\sigma_1, \sigma_1)$, and consider the linear functions $u_s(x) = u_s(x, s) = (1-x)\lambda_1 + xz_1, \quad 0 \leq x \leq 1$. We have $u_s(0) = \lambda_1, u_s(1) = \lambda_2$. Since V_0 is convex it follows that $(u_1, u_2) \in V_0, \quad 0 \leq x \leq 1$. Further, u_1, u_2 satisfy $u'' = 0$ and, by (2.8), have Wronskian

$$
\lambda_1(z_2 - \lambda_2) - \lambda_2(z_1 - \lambda_1) = \lambda_1z_2 - \lambda_2z_1 = v_1v_2 - v_2v_1.
$$

Hence, $y = y(x) = y(x, s) = F(u_1(x, s), u_2(x, s))$ satisfies

$$
(2.12) \quad y'' = f(y, y', w, 0), \quad 0 \leq x \leq 1.
$$

The equation (2.12) is independent of s. Referring to (2.7), (2.8), and (2.9), we verify that
\(y(0, s) = F(\lambda_1(s), \lambda_2(s)) = F(v_1^0, v_2^0), \)
\[
(2.13) \quad y'(0, s) = (\sigma_1 - \sigma_2)F_1(\lambda_1, \lambda_2) + (\sigma_3 - \sigma_2)F_2(\lambda_1, \lambda_2) = v_1F_1(v_1, v_2) + v_2F_2(v_1, v_2) - L(v_1, v_2).
\]

Thus, \(y(x, s), y'(x, s) \) have the same initial values, \(y(0, s), y'(0, s), \) independently of \(s. \) Since \(f \in C' \) on \(R, \) we conclude from the uniqueness property of solutions of differential equations that \(y(x, s) \) is independent of \(s \) on \(|s| < \sigma_1. \) Taking \(x = 1 \) we obtain

\[
(2.14) \quad F(z_1(s), z_2(s)) = F(z_1(0), z_2(0)) = F(v_1, v_2), \quad |s| < \sigma_1.
\]

We now differentiate in (2.14) and place \(s = 0. \) Using (2.10) we get
\[
(2.15) \quad (\alpha'(0)v_1 + \beta'(0)v_2)F_1(v_1, v_2) + (\gamma'(0)v_1 + \delta'(0)v_2)F_2(v_1, v_2) = 0.
\]

From (2.11) we obtain
\[
\begin{align*}
L\alpha'(0) &= \lambda_1'F_1 + v_2'\lambda_1 F_{12} + \lambda_2'F_{22}, \\
L\beta'(0) &= \lambda_2'F_2 - v_1'\lambda_1 F_{12} + \lambda_2'F_{22}, \\
L\gamma'(0) &= \lambda_1'F_1 - v_2'\lambda_1 F_{11} + \lambda_4'F_{12}, \\
L\delta'(0) &= \lambda_2'F_2 + v_1'\lambda_1 F_{11} + \lambda_4'F_{12},
\end{align*}
\]
where \(L, F_i, F_{ij} \) are evaluated at \((v_1^0, v_2^0), \) and \(\lambda_i \) at \(s = 0. \) By (2.7) and (2.9) we have for the same evaluations
\[
(2.16) \quad \lambda_1'F_1 + \lambda_4'F_2 = 0, \quad v_1'\lambda_1 F_{11} + \lambda_4'F_{12} + v_2'(\lambda_1 F_{12} + \lambda_4'F_{22}) = 0.
\]

Hence,
\[
(2.17) \quad \alpha'(0) + \delta'(0) = 0,
\]
\[
\begin{align*}
\nu_1^{(0)}\alpha'(0) + \nu_2^{(0)}\beta'(0) &= \lambda_1'(0), \\
\nu_1^{(0)}\gamma'(0) + \nu_2^{(0)}\delta'(0) &= \lambda_2'(0).
\end{align*}
\]

Now \(0 < (\lambda_1'(0))^2 + (\lambda_4'(0))^2. \) Placing \(a_0 = -\gamma'(0), b_0 = \alpha'(0) = -\delta'(0), c_0 = \beta'(0), \) we conclude that \(a_0, b_0, c_0 \) are not all zero, and, using (2.15), that (2.6) holds at \((v_1, v_2). \) The only restriction on \((v_1, v_2) \) was that \(v_1^0v_2 - v_2^0v_1 \neq 0. \) Hence, by continuity, (2.6) holds in \(V_0. \)

We prove now that constants \(a, b, c, \) not all zero, can be chosen so that
\[
(2.18) \quad (bu_1 + cu_2)F_1(u_1, u_2) - (au_1 + bu_2)F_2(u_1, u_2) = 0, \quad (u_1, u_2) \in V.
\]

By our preceding analysis, if \(P \subseteq V \) and \(V_P \) is an open disk in \(V \) having center at \(P, \) there corresponds to \(P \) and \(V_P \) a set of constants \(a_P, b_P, \)
c, not all zero, such that (2.18) holds in V_P with a_P, b_P, c_P in place of a, b, c. We observe that since the gradient of F is nonvanishing in V, if (2.18) holds with two different sets of constants on a domain $D \subset V$, these constants must be proportional. Hence, if we normalize the a_P, b_P, c_P, so that the first one which is not zero is one, then a_P, b_P, c_P are uniquely determined. We show that the normalized a_P, b_P, c_P are independent of P. Let P_0 be a fixed point in V, and let $P_1: (v_1^0, v_2^0)$ an arbitrary second point. Let $\Gamma: u_1 = \chi_1(t)$, $u_2 = \chi_2(t)$, $0 \leq t \leq 1$, $\chi_1(0) = v_1^0$, $\chi_1(1) = v_1^1$, be a Jordan arc in V with endpoints at P_0, P_1. Let E be the set of points t on $[0,1]$ such that $a_P = a_{P_0}$, $b_P = b_{P_0}$, $c_P = c_{P_0}$, where P has coordinates $(\chi_1(t), \chi_2(t))$. E is not void, and has on $[0,1]$ a least upper bound t', say. Utilizing our remark on the proportionality of constants for a domain D, we find first that $t' \in E$, and secondly that $t' = 1$. Thus $a_P = a_{P_0}$, $b_P = b_{P_0}$, $c_P = c_{P_0}$. Taking $a = a_{P_0}$, $b = b_{P_0}$, $c = c_{P_0}$, our conclusion relative to (2.18) follows.

The balance of the proof rests on (2.4) and (2.18). Let a, b, c, be constants, not all zero, for which (2.18) holds. Write $\omega(u_1, u_2) = au_1^2 + 2bu_1u_2 + cu_2^2$. From (2.4) and (2.18) we obtain

\[\omega F_1 = (au_1 + bu_2)\xi(F), \quad \omega F_2 = (bu_1 + cu_2)\xi(F) \]

for $(u_1, u_2) \in V$. We show first that $\omega \neq 0$ on V. Suppose, if possible, that $(v_1, v_2) \in V$ and $\omega(v_1, v_2) = 0$. Since $\xi(F) \neq 0$, it then follows that $av_1 + bv_2 = 0$, $bv_1 + cv_2 = 0$. Since V does not contain the origin, we then have $b^2 - ac = 0$. Not both a and c vanish, and we can assume without loss of generality that $a \neq 0$. In this case we have $\omega = (au_1 + bu_2)^2/a$ in V, and accordingly, by (2.19), $(au_1 + bu_2)^2 F_1 = a(au_1 + bu_2)\xi(F)$ in V. From this relation we obtain $(au_1 + bu_2)F_1 = a\xi(F)$ in V except possibly on the line $au_1 + bu_2 = 0$. By continuity we then have $\xi(F) = (au_1 + bu_2)F_1/a = 0$ at (v_1, v_2), which is a contradiction. Thus, $\omega \neq 0$ in V.

From (2.19) we have

\[dF = (1/2)\xi(F)\omega^{-1}d\omega, \quad (u_1, u_2) \in V. \]

Let η be arbitrary on (m, M). Motivated by (2.20) we define ϕ by (2.3). Then $\phi \in C'$ and $\phi' \neq 0$ on (m, M). From (2.20) we get

\[\phi^{-1}F d\phi(F) = (1/2)\omega^{-1}d\omega, \quad (u_1, u_2) \in V. \]

Since $\omega \neq 0$, we can normalize a, b, c so that at an arbitrary point (v_1, v_2) in V we have $0 < \omega$ and $\phi(F(v_1, v_2)) = \omega^{1/2}(v_1, v_2)$. The ω of our theorem is then determined. From (2.21) we obtain $\phi(F) = \omega^{1/2}$ in V. But ϕ has an inverse Φ. Thus, $F = \Phi(\omega^{1/2})$ in V. This completes the proof.
3. Solutions of (1.2). We now consider briefly the integration of (1.2) when \(f \) has the form (1.3) and \(Z, A, C \) satisfy (1.4). We assume that \(A \in C^0, Z \in C', C \in C' \), and that the equations (1.4) hold on an interval \(m < y < M \). We note that the first equation in (1.4) implies that \(Z \) vanishes at most once on \((m, M) \). Also, the two equations imply that \(Y = Z^2C \) satisfies \(Y' = 4AY \). Hence, \(ZC \neq 0 \) or \(ZC = 0 \) on \((m, M) \). It suffices then to treat two cases: Case I. \(Z \neq 0 \) on \((m, M) \); Case II. \(C = 0 \) and \(Z = 0 \) at some one point of \((m, M) \).

Case I. For the case \(Z \neq 0 \), Theorem 2 is directly applicable. For \(f \) in the form (1.3), \(f(y, 0, 0, 1) = Z(y) \). We then define \(\phi \) by (2.3) with \(\xi = Z \) and \(\eta \) arbitrary on \((m, M) \). We may observe that because of (1.4) \(\phi \) can be written

\[
(3.1) \quad \phi(y) = Z^{-1}(\eta)Z(y) \exp \left(- \int_{r}^{y} A(t) \, dt \right), \quad m < y < M.
\]

Denoting by \(\Phi \) the inverse of \(\phi \), we have \(\mathcal{F}(i) \subseteq C'' \), \(\Phi \neq 0 \) on \(g < t < G \), where \((g, G) \) is the range of \(\phi \). Plainly, \(0 \leq g \). It remains to determine \(\omega \). Let \(\omega(u_1, u_2) = au_1^2 + 2bu_1u_2 + cu_2^2 \) be an arbitrary homogeneous polynomial of degree 2 which is positive at some point in the plane. Put \(\Delta = b^2 - ac \), and let \(V \) be the (or a) domain determined by \(0 < \omega \), \(g < \omega^{1/2} < G \). Suppose that \(w(x), g(x) \) are arbitrary functions satisfying \(w \in C' \), \(w \neq 0 \), \(g \in C^0 \) on an interval \(J \). Let \(x_0 \) be a point of \(J \) and let \(y_0, y'_0 \) be arbitrary initial values, where \(m < y_0 < M \). Evidently we can find \((v_1, v_2) \) in \(V \) such that \(\omega^{1/2} = \omega(v_1, v_2) = \phi(y_0) \). Furthermore, \(v'_1, v'_2 \) can be determined so that \(wv'_2 - v_1v'_2 = w(x_0) \), \(\mathcal{F}(\omega^{1/2}) [v_1, v'_1] \omega^{1/2} = y'_1 \), where \([v_1, v'_1] = av_1v'_2 + bv_1v'_2 + bv_2v'_2 + cv_2v'_2 \). Denote by \(u_1(x), u_2(x) \) the solutions of (1.1) on \(J \) with initial values \(u_1(x_0) = v_1, \ u'_1(x_0) = v'_1 \). Then \(u_1(x), u_2(x) \) have Wronskian \(w \) and \((u_1, u_2) \in V \) for \(x \) in an interval \(I \) containing \(x_0 \). Defining \(y \) by (1/2) in \(\omega = \int_{x}^{y} Z^{-1}(\eta) \, dt \), and making use of (1.1), the first equation in (1.4) and the identity

\[
(3.2) \quad [u_1, u_2][u'_1, u'_2] = [u_1, u'_2]^2 - \Delta(u_1u'_2 - u_2u'_2),
\]

we find that \(y = y(x) = \Phi(\omega^{1/2}(u_1(x), u_2(x))) \) satisfies

\[
(3.3) \quad y'' = w'(x)w^{-1}(x)y' + g(x)Z(y) + A(y)(y')^2 - \Delta Z(y)\omega^{-2}w^2(x).
\]

But

\[
(3.4) \quad C(y) = C(\eta)Z^2(\eta)Z^{-2}(y) \exp \left(4 \int_{t}^{y} A(t) \, dt \right) = C(\eta)Z^{-1}(\eta)Z(y)\omega^{-2}.
\]

Hence, \(y \) satisfies (1.2) on \(I \) if \(\Delta = -C(\eta)Z^{-1}(\eta) \). We have, further, \(y(x_0) = \Phi(\omega^{1/2}) = y_0, \ y'(x_0) = \Phi'(\omega^{1/2}) [v_1, v'_1] \omega^{1/2} = y'_0 \). Accordingly,
for Case I, if $\Delta = -C(\eta)Z^{-1}(\eta)$, then for arbitrary $w(x)$, $q(x)$ having the properties prescribed above, $y = \Phi(\omega^{1/2}(u_1, u_2))$, together with solutions $u_1(x)$, $u_2(x)$ of (1.1) having Wronskian w, and such that $(u_1(x), u_2(x)) \in V$ provide the general solution of (1.2).

Case II. If Z vanishes at a point of (m, M), then the definition (2.3) is inappropriate. However, if η is chosen so that $Z(\eta) \neq 0$, then (3.1) is applicable. Defining ϕ by (3.1), and using the first equation in (1.4), we find that

$$\phi'(y) = Z^{-1}(\eta) \exp \left(- \int_{\eta}^{y} A(t) \, dt \right), \quad m < y < M. \tag{3.5}$$

Thus, $\phi \in C''$ and $\phi' \neq 0$ on (m, M). Denoting by Φ the inverse of ϕ, we have again $\Phi(t) \in C''$, $\Phi' \neq 0$ on $g < t < G$, where (g, G) is the range of ϕ. In this case, $g < 0 < G$. Let $\omega(u_1, u_2) = au_1 + bu_2$ be an arbitrary nontrivial linear function. Determine V by $g < \omega < G$. Introducing w, q, u_1, u_2 as in the preceding paragraph, we find that $y = \Phi(au_1 + bu_2)$ satisfies

$$y'' = w'w^{-1}y' + qZ(y) + A(y)(y')^2. \tag{3.6}$$

Since in the case under consideration we have $C = 0$, we see that $y = \Phi(\omega(u_1, u_2))$, together with appropriate solutions of (1.1), provide the general solution (1.2) for Case II.

We may observe that canonical forms for the solution of (1.2) are

$$y = \Phi([u_1 + u_2]^{1/2}), \quad y = \Phi([u_1 - u_2]^{1/2}), \quad y = \Phi(u_1),$$

where u_1, u_2 are solutions of (1.1).

REFERENCES

UNIVERSITY OF GLASGOW, GLASGOW, SCOTLAND AND
DUKE UNIVERSITY