A NOTE ON SEMIGROUPS OF OPERATORS
ON A LOCALLY CONVEX SPACE

K. SINGBAL-VEDAK

1. The object of this note is to generalize certain results in the theory of semigroups of continuous linear operators on a Banach space to the case where, instead of a Banach space, we consider a locally convex space. A family \(\{T(\xi)\}_{\xi \geq 0} \) of linear operators on a vector space is called a semigroup if \(T(\xi + \eta) = T(\xi) \circ T(\eta) \), \(\xi, \eta \in (0, \infty) \). E. Hille [4] and N. Dunford [2] have proved that if \(\{T(\xi)\}_{\xi \geq 0} \) is a semigroup of bounded linear operators on a Banach space \(E \) such that for every \(x \in E \), \(\xi \rightarrow T(\xi)x \) is a measurable function from \((0, \infty) \) into \(E \) and such that \(\|T(\xi)\|_{E \rightarrow E} \leq 1 \) is bounded for every \(\delta > 0 (\delta < 1) \), then \(\xi \rightarrow T(\xi)x \) is a continuous function from \((0, \infty) \) into \(E \) for \(x \in E \). Proposition 2 is an analogue of this result while Propositions 3 and 4 are analogues of results due to R. S. Phillips [5] and P. Lax, respectively.

2. Definition 1. Let \(E \) be a locally convex space, \(S \) a set and \(\mathcal{M} \) a \(\sigma \)-ring of “measurable” subsets of \(S \). A function \(x: S \rightarrow E \) \((\xi \rightarrow x(\xi))\) is called measurable if it is the limit, almost everywhere, of a sequence of countably valued functions. (A function is said to be countably valued if its range is countable and it takes each value different from zero on a measurable set.)

Remark. If \(x(\xi) \) is a measurable \(E \)-valued function and \(p \) is any continuous seminorm on \(E \), then \(p(x(\xi)) \) is a real-valued measurable function on \(S \).

Proposition 1. Let \(S = (0, \infty) \) with \(\mathcal{M} \) the \(\sigma \)-ring of Lebesgue measurable subsets of \((0, \infty) \) and \(x(\sigma) \) be a measurable function from \((0, \infty) \) into \(E \). Then for any continuous seminorm \(q \) on \(E \), there exists a sequence \(\{x_n(\sigma)\}_{n=1,2,...} \) of countably valued functions such that \(q(x(\sigma) - x_n(\sigma)) \rightarrow 0 \) as \(n \rightarrow \infty \) uniformly for \(\sigma \) outside a set of measure zero.

We shall prove the proposition under a weaker hypothesis, viz., that \(x(\sigma) \) is weakly measurable (i.e., for every continuous linear functional \(x' \) on \(E \), \(\langle x(\sigma), x' \rangle \) is a measurable function of \(\sigma \) on \((0, \infty) \)) and that \(x(\sigma) \) is almost separably valued (i.e., \(x(\sigma) \) belongs to a separable subspace of \(E \) almost everywhere).

We may suppose that the range of \(x(\sigma) \) is contained in a separable subspace \(L \) of \(E \) and find a sequence \(\{x_n(\sigma)\}_{n \geq 1} \) of countably valued...
functions such that \(g(x_n(\sigma) - x(\sigma)) \) tends to zero as \(n \) tends to infinity uniformly for \(\sigma \) in \((0, \infty)\). Let \(\mathcal{L} \) denote the quotient space of \(\mathcal{L} \), on which \(g \) defines a norm \(\tilde{g} \). The completion \(\tilde{\mathcal{L}}^\sim \) of \(\mathcal{L} \) is a separable Banach space. Hence its conjugate space \((\tilde{\mathcal{L}}^\sim)'\) contains a sequence \(\{y_n^*\} \) such that

\[
\tilde{g}(\tilde{x}) = \sup_n |\langle \tilde{x}, y_n^* \rangle| \quad \text{for } \tilde{x} \in \tilde{\mathcal{L}}^\sim.
\]

Now \(x \to y_n^*(x) \), where \(\tilde{x} \) is the image of \(x \) by the quotient map \(L \to \tilde{L} \), is a continuous linear functional on \(L \). By the Hanh-Banach theorem, there exists a continuous linear functional \(x^* \) on \(E \) such that

\[
\langle \tilde{x}, y_n^* \rangle = \langle x, x_n^* \rangle \quad \text{for } x \in L \text{ and } n = 1, 2, \ldots.
\]

Now \(q(x(\sigma)) = \tilde{q}(\tilde{x}(\sigma)) = \sup_n |\langle x(\sigma), x_n^* \rangle| \) is measurable as \(\langle x(\sigma), x_n^* \rangle \) is measurable for \(n = 1, 2, \ldots \). Similarly, for any \(a \in L \), \(q(x(\sigma) - a) \) is a measurable function. Let \(A = \{ \sigma | q(x(\sigma)) > 0 \} \). If \(\{a_i\} \) is a sequence dense in \(L \) and \(A = A \cap \{ a_i q(x(\sigma) - a_i) \} < 1/n \) then \(A = \bigcup a_i A_i \). Let \(B_i = A_i, B_j = A_i - \bigcup_{i=1}^{j-1} B_i \) \((j > 1)\). The \(B_i \) are disjoint measurable and \(\bigcup B_i = \bigcup A_i = A \).

Let

\[
x_n(\sigma) = a_i \quad \text{for } \sigma \in B_i,
\]

\[
= 0 \quad \text{for } \sigma \notin A.
\]

Then \(q(x(\sigma) - x_n(\sigma)) < 1/n \) for all \(\sigma \) so that \(q(x(\sigma) - x_n(\sigma)) \to 0 \) as \(n \to \infty \) uniformly for \(\sigma \) in \((0, \infty)\).

Definition 2. A semigroup of operators on a locally convex space \(E \) is said to be measurable if, for \(x \in E \), the function \(\xi \to T(\xi)x \) is measurable from \((0, \infty)\) to \(E \).

Proposition 2. If \(\{ T(\xi) \}_{\xi > 0} \) is a measurable semigroup of continuous linear operators in a locally convex space \(E \) such that, for every \([\alpha, \beta] \subset (0, \infty)\), \(\{ T(\tau) \}_{\alpha < \tau < \beta} \) is an equicontinuous family of operators, then \(\xi \to T(\xi)x \) is continuous for every \(x \in E \).

Proof. We have to show that for \(\xi \in (0, \infty) \) and \(x \in E \),

\[
(1) \quad T(\xi \pm \eta)x - T(\xi)x \to 0 \quad \text{in } E \text{ as } \eta \to 0.
\]

Let \(0 < \alpha < \beta < \xi \). As \(\{ T(\tau) \}_{\tau \in [\alpha, \beta]} \) is an equicontinuous set, given any continuous seminorm \(p \) on \(E \), there exists a continuous seminorm \(g \) on \(E \) and \(k > 0 \) such that

\[
(2) \quad p(T(\tau)y) \leq kg(y) \quad \text{for } \alpha \leq \tau \leq \beta \text{ and } y \in E.
\]

Let \(\eta > 0 \) be such that \(\alpha - \eta > 0 \) and \(\beta < \xi - \eta \) for \(0 < \eta < \eta_0 \). By (2), we have
698

K. SINGBAL-VEDAK

\[p(T(\xi \pm \eta) - T(\xi)x) = p(T(\tau)[T(\xi \pm \eta - \tau)x - T(\xi - \tau)x]) \leq kq(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x). \]

As \(\{ T(\xi \pm \eta - \tau) \}_{\tau \in [\alpha, \beta]} \) and \(\{ T(\xi - \tau) \}_{\tau \in [\alpha, \beta]} \) are equicontinuous sets, \(\{ T(\xi \pm \eta - \tau)x \}_{\tau \in [\alpha, \beta]} \) and \(\{ T(\xi - \tau)x \}_{\tau \in [\alpha, \beta]} \) are bounded subsets of \(E \) so that \(q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x) \) is a bounded measurable function of \(\tau \) in \([\alpha, \beta] \). Integrating (3) with respect to \(\tau \) from \(\alpha \) to \(\beta \) we get

\[(\beta - \alpha)p(T(\xi \pm \eta)x - T(\xi)x) \leq k \int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x) \, d\tau. \]

The integral on the right-hand side tends to zero with \(\eta \) if we show that, for given \(\epsilon > 0 \), there exists a continuous \(E \)-valued function \(f_*(\tau) \) such that

\[\int_{\alpha - \epsilon_0}^{\beta + \epsilon_0} q(T(\xi - \tau)x - f_*(\tau)) \, d\tau < \epsilon. \]

For then

\[
\begin{align*}
\int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x) \, d\tau & \leq \int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - f_*(\tau \mp \eta)) \, d\tau + \int_{\alpha}^{\beta} q(f_*(\tau \mp \eta) - f_*(\tau)) \, d\tau \\
& + \int_{\alpha}^{\beta} q(f_*(\tau) - T(\xi - \tau)x) \, d\tau
\end{align*}
\]

and the first and the third integrals are each majorised by \(\epsilon \) and the second integral tends to zero with \(\eta \) since \(f_*(\tau) \) is continuous. Now \(h(\tau) = T(\xi - \tau)x \) being measurable from proposition (1), it follows that, given \(\epsilon > 0 \), there exists a countably valued function \(x(\tau) \) such that \(\int_{\alpha - \eta_0}^{\beta + \eta_0} q(h(\tau) - x(\tau)) \, d\tau < \epsilon/3 \). Let \(x(\tau) = \sum_{i=1}^{n} a_i \chi_{A_i} \) where \(a_i \in E \) and \(\chi_{A_i} \) are characteristic functions of disjoint measurable sets \(A_i \) contained in \([\alpha - \eta_0, \beta + \eta_0] \). Then we can choose \(m \) such that for \(y(\tau) = \sum_{i=1}^{n} a_i \chi_{A_i}, \int_{\alpha - \eta_0}^{\beta + \eta_0} q(x(\tau) - y(\tau)) \, d\tau < \epsilon/3 \). Let \(q(y(\tau)) \leq M. \) Given \(\delta > 0 \) we can find compact sets \(K_i \subset A_i \) and open sets \(O_i \supset A_i \) \((i = 1, 2, \ldots, m) \) such that \(\sum_{i=1}^{m} m(O_i - K_i) < \delta \) \((m \) being Lebesgue measure). For every \(i \) there exists a continuous function \(g_i(\tau), 0 \leq g_i(\tau) \leq 1, \) such that \(g_i(\tau) \) equals 1 on \(K_i \) and 0 outside \(O_i \). If \(g(\tau) = \sum_{i=1}^{n} a_i g_i(\tau), \) then \(q(g(\tau)) < mM \) and \(g(\tau) \) equals \(y(\tau) \) for \(\tau \in \bigcup_{i=1}^{m} (O_i - K_i) \) so that \(\int_{\alpha - \eta_0}^{\beta + \eta_0} q(y(\tau) - g(\tau)) \, d\tau < 2mM \delta < \epsilon/3 \) for \(\delta < \epsilon/6mM. \) Taking \(f_*(\tau) = g(\tau), \) (5) is satisfied.
Remark 1. Proposition 2 remains true if instead of the hypothesis that $\xi \mapsto T(\xi)x$ are E-valued measurable functions for $x \in E$, we have the weaker hypothesis that these functions are weakly measurable and almost separably valued. For, from the proof of Proposition 1, given $\epsilon > 0$, there exists a countably valued function $x(\tau)$ such that $\int_{\mathbb{R}^+} \frac{1}{q} \left| h(\tau)x - x(\tau) \right| d\tau < \epsilon/3$ and the proof is completed by the same method as above.

Remark 2. The converse of Proposition 2, viz., the statement that "If $\{ F(\xi) \}_{\xi > 0}$ is a semigroup such that $\xi \mapsto F(\xi)x$ are continuous functions for $x \in E$, then $\{ F(\xi) \}_{\xi > 0}$ is a measurable semigroup such that for every $[a, \beta] \subset (0, \infty)$, $\{ F(\xi) \}_{\xi \in [a, \beta]}$ is an equicontinuous set of maps of E into E" is true if E is barrelled (tonnelé) or is the strong dual of a metrisable locally convex space. For, if $\xi \mapsto F(\xi)x$ is continuous, then it is measurable and maps the compact set $[a, \beta] \subset (0, \infty)$ onto a compact subset of E. Thus $\{ F(\xi) \}_{\xi \in [a, \beta]}$ is compact in $\mathcal{L}(E, E)$, the space of linear continuous maps of E into E furnished with the topology of simple convergence, and therefore is a closed bounded subset of $\mathcal{L}(E, E)$. If E is barrelled, this implies that $\{ F(\xi) \}_{\xi \in [a, \beta]}$ is equicontinuous. If E is the strong dual of a metrisable space, let $(\xi_n)_{n=1, 2, ...}$ denote the sequence of rationals in $[a, \beta]$. Then $\{ T(\xi_n) \}_{n=1, 2, ...}$ being a subset of $\{ T(\xi) \}_{\xi \in [a, \beta]}$ and is therefore equicontinuous [3, Proposition 1, p. 62]. Hence its closure in $\mathcal{L}(E, E)$ is equicontinuous. Now, for any $\sigma \in [a, \beta]$, there exists a subsequence (ξ_{n_k}) of (ξ_n) such that $\xi_{n_k} \to \sigma$ as $k \to \infty$, so that $T(\sigma)x = \lim T(\xi_{n_k})x$ for every $x \in E$. Thus $\{ T(\xi) \}_{\xi \in [a, \beta]}$ is the closure of $\{ T(\xi_n) \}_{n=1, 2, ...}$ in $\mathcal{L}(E, E)$ which is equicontinuous.

Proposition 3. Let $\{ T(\xi) \}_{\xi > 0}$ be a measurable semigroup of continuous linear operators in a Fréchet space E. Then for any $[a, \beta] \subset (0, \infty)$,

$$\{ T(\xi) \}_{\xi \in [a, \beta]}$$

is an equicontinuous set of maps of E into E.

Proof. Let $\{ p_n \}$ be a sequence or seminorms on E defining the topology of E. Since E is Fréchet, it is sufficient to prove that $\{ T(\xi)x \}_{\xi \in [a, \beta]}$ is bounded in E for any fixed $x \in E$. If this is not true, there exists an $x \in E$ and an integer i_0 and a sequence $\{ \xi_n \}_{n=1, 2, ...}$ tending to a real number γ where $\xi_n, \gamma \in [a, \beta]$, such that

$$p_n(T(\xi_n)x) \geq n \quad \text{for all } n.$$

Let $\{ F_i \}_{i=1, 2, ...}$ be a sequence of measurable subsets of $(0, \gamma)$ such that
(i) $F_{i+1} \subseteq F_i$,
(ii) the measure $m(F_i) > \gamma/2 + \gamma/3i$,
(iii) the measurable function $p_i(T(\xi)x)$ is bounded on F_i by M_i, say.

Clearly such a sequence exists and $F = \bigcap_{i=1}^\infty F_i$ is measurable with $m(F) \geq \gamma/2$ and $p_i\{T(\xi)x\} \leq M_i$ for $\xi \in F$, and $i = 1, 2, \ldots$, i.e., $\{T(\xi)x\}_{\xi \in F}$ is a bounded subset of E.

The sets

$$A_n = \{\xi_n - \eta \mid \eta \in F \cap (0, \xi_n)\}, \quad n = 1, 2, \ldots$$

are measurable and

(1) \quad $m(A_n) \geq \frac{\gamma}{4}$ \quad for $n \geq N$, say.

For $\eta \in F \cap (0, \xi_n)$,

$$n = p_{i_0}[T(\xi_n)x] \leq p_{i_0}[T(\xi_n - \eta)T(\eta)x].$$

Let $\sigma \in A_n$ be arbitrary. Then

$$\sigma = \xi_n - \eta \quad \text{for some } \eta \in F \cap (0, \xi_n),$$

so that

(2) \quad $p_{i_0}[T(\sigma)T(\eta)x] \geq n$.

Let $A = \limsup_{n \to \infty} A_n$. Then $m(A) \geq \gamma/4$ by (1). For $\sigma_0 \in A$, p_{i_0} is unbounded on $T(\sigma_0)\{T(\eta)x\}_{\eta \in F}$ by (2), i.e., $T(\sigma_0)\{T(\eta)x\}_{\eta \in F}$ is not a bounded subset of E. This is a contradiction since $T(\sigma_0)$ is a continuous linear map of E into E and $\{T(\eta)x\}_{\eta \in F}$ is a bounded set in E.

Combining Propositions 2 and 3 we have the

THEOREM. Every measurable semigroup of continuous linear operators on a Fréchet space is a continuous function from $(0, \infty)$ into the space of continuous linear maps of E into E furnished with the topology of simple convergence.

3. PROPOSITION 4. Let $\{T(\xi)\}_{\xi \geq 0}$ be a measurable semigroup of continuous linear operators on a locally convex space E such that $\{T(\xi)\}_{\alpha \leq \xi \leq \beta}$ is an equicontinuous family for each $[\alpha, \beta] \subset (0, \infty)$ and such that for some $\delta > 0$, $T(\xi_0)$ is a compact operator on E. Then, for any $\alpha > \xi_0$, $T(\alpha)$ is a compact operator and $\xi \to T(\xi)$ is a continuous mapping of (α, ∞) into $\mathcal{L}_{\mathcal{B}}(E, E)$ where $\mathcal{L}_{\mathcal{B}}(E, E)$ is the space of continuous linear maps of E into E furnished with the topology of uniform convergence on bounded subsets of E.
Proof. Let $b > a > \xi_0$ and let B be a bounded subset of E, V a neighbourhood of 0 in E and

$$W(B, V) = \{ u \in \text{L}(E, E) \mid u(B) \subset V \}.$$

We shall show that there exists $\delta > 0$ such that

$$T(\xi + \eta) - T(\xi) \in W(B, V)$$

for $|\eta| < \delta$, $a < \xi < b$, $a < \xi + \eta < b$.

As the sets $\{ W(B, V) \}$, where B is a bounded subset of E and V is a neighbourhood of 0 in E, form a fundamental system of neighbourhoods of zero in $\text{L}(E, E)$, this will prove that $T(\xi + \eta) - T(\xi) \to 0$ in $\text{L}(E, E)$ as $\eta \to 0$. Let V_1 be a neighbourhood of 0 in E such that

(1) \hspace{1cm} V_1 + V_1 + V_1 \subset V.

Let V_2 be a neighbourhood of 0 in E such that

(2) \hspace{1cm} V_2 \subset V_1

and

(3) \hspace{1cm} T(\xi - \xi_0) V_2 \subset V_1 \quad \text{for} \hspace{0.5cm} a \leq \xi \leq b.

This is possible since $\{ T(\xi - \xi_0) \}_{\xi \in [a, b]}$ is an equicontinuous family of maps of E into E.

Now, $T(\xi_0)$ being a compact operator, there exists a neighbourhood U of 0 such that $T(\xi_0) U$ is a relatively compact subset of E. The bounded subset B of E is absorbed by U, so that $T(\xi_0) B$ is also relatively compact. Given a neighbourhood V_2 of 0 in E, there exist $x_1, x_2, \cdots, x_n \in E$ such that

$$T(\xi_0) B \subset \bigcup_{k=1}^{n} \{ T(\xi_0) x_k + V_2 \},$$

i.e., for any $x \in B$, there exists an x_k such that

(4) \hspace{1cm} T(\xi_0) x - T(\xi_0) x_k \in V_2.

By Proposition 1, for any $x \in E$, $\xi \to T(\xi) x$ is a continuous function from $(0, \infty)$ into E. In particular, $\xi \to T(\xi) x_k$ are continuous functions for $k = 1, 2, \cdots, n$. We can, therefore, find $\delta > 0$ such that, for $k = 1, 2, \cdots, n$,

$$T(\xi + \eta) x_k - T(\xi) x_k \in V_2 \quad \text{if} \quad |\eta| < \delta, \ a \leq \xi, \ \xi + \eta \leq b.$$

Let $x \in B$ and x_k be as in (4). Then
\begin{align*}
T(\xi + \eta)x - T(\xi)x &= T(\xi + \eta)x - T(\xi + \eta)x_k + T(\xi + \eta)x_k - T(\xi)x_k \\
&+ T(\xi)x_k - T(\xi)x \\
&= T(\xi + \eta - \xi_0)[T(\xi_0)x - T(\xi_0)x_k] \\
&+ [T(\xi + \eta)x_k - T(\xi)x_k] \\
&+ T(\xi - \xi_0)[T(\xi_0)x_k - T(\xi_0)x] \\
&\subseteq T(\xi + \eta - \xi_0)V_2 + V_2 + T(\xi - \xi_0)V_2 \\
&\subseteq V_1 + V_1 + V_1 \subseteq V;
\end{align*}

i.e., \([T(\xi + \eta) - T(\xi)]B \subseteq V\) for \(|\eta| < \delta, a \leq \xi + \eta \leq b, \xi_0 < a\). This proves the required continuity of the function \(\xi \mapsto T(\xi)\).

That \(T(\xi)\) is compact for \(\xi > \xi_0\) follows from the fact \(T(\xi_0)\) is a compact operator and \(T(\xi) = T(\xi - \xi_0)T(\xi_0)\) where \(T(\xi - \xi_0)\) is a continuous linear map of \(E\) into \(E\).

\section*{References}

\textbf{Tata Institute of Fundamental Research, Bombay, India}

\section*{ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS1}

\textbf{T. S. CHIHARA}

\section{Introduction.} Consider a set \(\{P_n(x)\}\) of orthogonal polynomials defined by the classical recurrence formula,

\begin{equation}
\begin{aligned}
P_n(x) &= (x - c_n)P_{n-1}(x) - \lambda_nP_{n-2}(x) \quad (n = 1, 2, 3, \ldots), \\
P_{-1}(x) &= 0, \quad P_0(x) = 1, \quad c_n \text{ real}, \quad \lambda_{n+1} > 0.
\end{aligned}
\end{equation}

In [2], the author initiated a study of (1.1) based on the chain sequences of Wall [6], the fundamental relation being that the zeros

\footnotesize
Presented to the Society, January 26, 1964; received by the editors October 10, 1963.

1 This work was supported by the National Science Foundation (NSF-GP 1230).