METRIC-DEPENDENT DIMENSION FUNCTIONS

K. NAGAMI AND J. H. ROBERTS

The starting point of this study was an attempt to solve a problem proposed by G. M. Rosenstein [3] in his doctoral dissertation.

ROSENSTEIN’S PROBLEM. Suppose that R is a metrizable space, $\dim R \geq n$ (covering dimension), and ρ is any compatible metric for R. Then is it true that there exist n pairs of closed sets $C_1, C'_1, \ldots, C_n, C'_n$ such that (i) $\rho(C_i, C'_i) > 0$ for all i and (ii) if for each i, B_i is a closed set separating C_i and C'_i, then $\bigcap_{i=1}^{n} B_i \neq \emptyset$?

Remark. If, in this problem, “(i) $\rho(C_i, C'_i) > 0$” is replaced by “(i*) $C_i \cap C'_i = \emptyset$,” one obtains a characteristic property for metric spaces R such that $\dim R \geq n$. (See [1, Remark, for the separable case, p. 78].)

Our main result is an example which shows that the answer to the problem is in the negative. In the notation given below, our example is a metric space (R, ρ) such that $\dim R = 2$ and $d_2(R, \rho) = 1$. For $n = 1$ the problem is answered in the affirmative.

Definition of $d_n(R, \rho)$. Let (R, ρ) be a metric space with metric ρ. We define $d_n(R, \rho)$ inductively as follows: For the empty set \emptyset, $d_1(\emptyset, \rho) = -1$. If for every pair of closed subsets F, H of R with $\rho(F, H) > 0$ there exists an open set G with $F \subset G \subset R - H$ and with $d_1(G - G, \rho^*) \leq n - 1$, where ρ^* is the restriction of ρ to $G - G$, then we say $d_1(R, \rho) \leq n$. If there is no such integer n, then we say $d_1(R, \rho) = \infty$.

Theorem. For any metric space (R, ρ) we have $d_1(R, \rho) = \text{Ind } R$, where $\text{Ind } R$ is the large inductive dimension of R defined by means of sets separating disjoint closed pairs of subsets.

Proof. It is evident that $d_1(R, \rho) \leq \text{Ind } R$. When $d_1(R, \rho) = \infty$, it is also evident that $d_1(R, \rho) \geq \text{Ind } R$. Hence we suppose that $d_1(R, \rho) \leq n$ and make the induction assumption that $d_1(R', \rho') \geq \text{Ind } R'$ for any metric space (R', ρ') with $d_1(R', \rho') \leq n - 1$. Let H and F be disjoint closed subsets of R. Put $D_i = \{x : \rho(x, H) < 1/i\}$, and $E_i = \{x : \rho(x, F) < 1/i\}$, $i = 1, 2, \ldots$. Then there exist open sets M_i with $H \subset M_i \subset D_i$, $d_1(M_i - M_i, \rho) \leq n - 1$, $i = 1, 2, \ldots$, and open sets N_i with $F \subset N_i \subset E_i$, $d_1(N_i - N_i, \rho) \leq n - 1$, $i = 1, 2, \ldots$. Put $G_i = M_i - N_i$, $i = 1, 2, \ldots$, and $G = \bigcup_{i=1}^{\infty} G_i$. Then it can easily be seen that $H \subset G \subset R - F$.

Presented to the Society, August 25, 1963; received by the editors May 6, 1964.

1 This research was supported in part by the National Science Foundation, Grant GF-2065.
Since $G_i - G_i \subseteq (M_i - M_i) \cup (N_i - N_i)$, we have $\text{Ind}(G_i - G_i) \leq n - 1$ by the induction assumption. Since $\{G_i : i = 1, 2, \ldots \}$ is locally finite at every point of $R - (H \cup F)$ and $G-G$ is contained in $R - (H \cup F)$, we have $G-G \subseteq \bigcup \{G_i - G_i : i = 1, 2, \ldots \}$. Every point x of $G-G$ has a relative neighborhood $U(x)$ which is contained in the sum of a finite number of elements of $\{G_i - G_i : i = 1, 2, \ldots \}$. Hence $\text{Ind} \ U(x) \leq n - 1$ and we have $\text{Ind}(G-G) \leq n - 1$ by the local dimension theorem. Thus we know $\text{Ind} \ R \leq n$ and the theorem is proved.

Corollary. If R is a metrizable space with $\dim R = 1$ and ρ is any compatible metric for R, then there exists a pair of closed sets C and C' with $\rho(C, C') > 0$ such that the empty set cannot separate C and C'.

Definition of $d_2(R, \rho)$. Let (R, ρ) be a metric space with metric ρ. We write $d_2(\emptyset, \rho) = -1$. If there exists a greatest integer n such that there exist n pairs $C_i, C'_i, \ldots, C_n, C'_n$ such that (i) $\rho(C_i, C'_i) > 0$ and (ii) if for each i, B_i is a closed set separating R between C_i and C'_i, then $\bigcap_{i=1}^n B_i = \emptyset$, then we say $d_2(R, \rho) = n$. Otherwise $d_2(R, \rho) = \infty$.

Rosenstein's problem may now be stated as follows: Is it true that $d_2(R, \rho) = \dim R$?

Example. In the closed 3-cell I^3 we define a countable disjoint collection $\mathcal{A} = \{A_i : i = 1, 2, \ldots \}$, set $A = \bigcup \mathcal{A}$ and $R = I^3 - A$. We prove that $\dim R = 2$ and $d_2(R, \rho) = 1$, where ρ is the Euclidean metric on I^3. Let $\mathcal{U} = \{U_1, U_2, \ldots \}$ be any countable base for the topology of I^3. The set of all finite unions of elements of \mathcal{U} is countable; hence so is the set of all quadruples of such unions and, a fortiori, any subset. Thus there exists a countable sequence Q_1, Q_2, \ldots, such that for all i

1. $Q_i = \{B_i, C_i, D_i, E_i\}$,
2. each of B_i, C_i, D_i, E_i is a finite union of elements of \mathcal{U},
3. $\rho(B_i, C_i) > 0$ and $\rho(D_i, E_i) > 0$, and
4. if $Q' = \{B', C', D', E'\}$ is any quadruple satisfying (2) and (3) then for some i we have $Q' = Q_i$.

For each i we define closed sets M_i and N_i such that M_i separates B_i and C_i, N_i separates D_i and E_i, and we set $A_i = M_i \cap N_i$. We want $\mathcal{A} = \{A_i : i = 1, 2, \ldots \}$ to be a disjoint collection. Let $\varepsilon = \min \{\rho(B_i, C_i), \rho(D_i, E_i)\}$. Let $\pi, \pi_\varepsilon, \pi_\varepsilon, \pi_\varepsilon, \ldots$ be a monotonically increasing sequence of prime numbers such that for all i, $1/\pi_i < \varepsilon/\sqrt{3}$. Divide I^3 into π_i^3 small closed cubes whose edges have length $1/\pi_i$, let H_i denote the union of all such cubes that intersect B_i, and let $M_i = \text{boundary of } H_i$. Similarly, using π_ε instead of π_i.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
let K_i be the union of all small cubes intersecting D_i and let N_i = boundary of K_i. Set $A_i=M_i\cap N_i$. If $x\in A_i$, then one coordinate of x is of the form a/π_i and one coordinate is of the form b/π'_i, where a and b are integers, $0<a<\pi_i$, $0<b<\pi'_i$.

Assertion 1. For all i, M_i is a closed set separating B_i and C_i and N_i is a closed set separating D_i and E_i.

Assertion 2. For all i, A_i is closed and $\dim A_i \leq 1$.

Proof. If a and b are positive integers with $0<a<\pi_i$, $0<b<\pi'_i$, then $a/\pi_i \neq b/\pi'_i$; hence if $x\in A_i$, then at least two of its coordinates are rational. By [1, Example III 6, p. 29] this shows that $\dim A_i \leq 1$.

Assertion 3. If $i \neq j$, then $A_i \cap A_j = \emptyset$.

Proof. Assume there exists $x \in A_i \cap A_j$. Then there exist four integers $0 < a < \pi_i$, $0 < b < \pi'_i$, $0 < c < \pi_j$, $0 < d < \pi'_j$ such that x must have coordinates equal to each of a/π_i, b/π'_i, c/π_j, d/π'_j, four distinct numbers. But x has only 3 coordinates.

Assertion 4. $d_2(R, \rho) \leq 1$.

Proof. Let B, C, D, E be any relatively closed sets in R such that $\rho(B, C) > 0$, $\rho(D, E) > 0$. Then their closures in I^n are compact and for some i we have $B \subseteq B_i$, $C \subseteq C_i$, $D \subseteq D_i$ and $E \subseteq E_i$; so M_i separates B and C in I^n, N_i separates D and E in I^n. But then $M_i \cap R$ and $N_i \cap R$ are corresponding separating sets in R, and their intersection is vacuous since $M_i \cap N_i = A_i \subset I^n - R$.

Assertion 5. $\dim R \geq 2$.

Proof. This follows from Brouwer's theorem on invariance of domain, since it can easily be seen that A is dense in I^n.

Assertion 6. $\dim R \geq 2$.

To prove this assertion we need the following two lemmas.

Lemma 1. Let S be a subset of the closed n-cell I^n with $\dim S \leq n - 2$. Then for any points p and q in $I^n - S$ there exists a continuum K such that (i) K is contained in $I^n - S$ and (ii) K contains p and q. (See [4].)

Lemma 2. A continuum cannot be decomposed into a countably infinite or finite (but more than one) union of pairwise disjoint closed subsets. (See [2, Theorem 44, p. 30].)

Proof of assertion 6. Assume that $\dim R < 2$. If A is closed, then R is an F_σ and $\dim I^n \leq \max(\dim A, \dim R) < 2$, which is impossible. Thus there exist integers i and j with $i \neq j$ such that $A_i \neq \emptyset$, $A_j \neq \emptyset$. Take $p \in A_i$, $q \in A_j$. By Lemma 1 there exists a continuum K such that (i) $\{p, q\} \subset K$ and (ii) $K \subset I^n - R = A$. Thus $K = \bigcup_{i \neq j}^n (K \cap A_i)$, a countable union of pairwise disjoint closed sets at least two of which
are not vacuous. But this is impossible by Lemma 2, so the proof of
Assertion 6 is completed.

Assertion 7. \(d_2(R, \rho) \geq 1\).

Proof. Since \(\dim R = 2\), \(d_2(R, \rho) \neq -1\). It is obvious that \(d_2(R, \rho) = 0\) if and only if \(d_1(R, \rho) = 0\). On the other hand we already know that \(d_1(R, \rho) = \dim R\) by the above theorem. Thus \(d_2(R, \rho) < 1\) contradicts \(\dim R = 2\).

Remark. By a construction quite similar to that just given, one may start with \(I^n\) for \(n > 3\), and define a subset \(R\) such that \(\dim R = n - 1\) and \(d_2(R, \rho) \leq n/2\).

Problem. Is it true that, given a metric space \((R, \rho)\), \(\dim R \geq n\) implies that \(d_2(R, \rho) \leq n/2\)?

References

