POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = gp(a_1, \ldots, a_n; R_1(a_\lambda) = 1, \ldots, R_m(a_\lambda) = 1),$$

where (i) each defining relator is cyclically reduced and (ii) if B_i and B_j are cyclic transforms of R_i and R_j, then less than one-eighth of the length of the shorter one cancels in the product $B_i^{\pm 1}B_j^{\pm 1}$, unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group $F(p; n_1, \ldots, n_d; m)$, see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \ldots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

Remark. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word V^* conjugate to V by writing the word V in a circle and then reducing. Such a word V^* will be called a \textit{reduced cyclic transform} of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.
Lemma. Let \(W \) be cyclically fully reduced, let \(W \) be conjugate to \(V \), and let \(l(V) = n \). Then \(l(W) \leq r^2 + rn \).

Proof of Lemma. By Greendlinger’s Basic Theorem in [2, p. 643], there exist reduced cyclic transforms \(W^* \) and \(V^* \) of \(W \) and \(V \) such that \(W^* = T^{-1}V^*T \), where \(l(T) < r/8 \) and \(l(V^*) \leq l(V) \). Hence

\[
l(T^{-1}V^*T) < r/8 + n + r/8 < r + n.
\]

Consequently, by Lemma 3 in [3],

\[
l(W^*) \leq rl(T^{-1}V^*T) \leq r^2 + rn.
\]

But \(W \) cyclically fully reduced implies \(l(W) = l(W^*) \). Hence the lemma is true.

Suppose, now, that an arbitrary word \(W \neq 1 \) in an eighth-group is a power, say \(W = V^m \) and \(l(W) = n \). Let \(A \) be a reduced cyclic transform of \(V \); then \(W \) is conjugate to \(A^m \). Lemma 4 in [3] implies that \(A^m = B \), where \(B \) is cyclically fully reduced and where (i) \(l(B) \geq m \), and (ii) \(l(B) \geq l(A) - r \). Accordingly, our lemma above implies

\[
(1) \quad m \leq l(B) < r^2 + nr,
\]

\[
(2) \quad l(A) \leq l(B) + r < r^2 + nr + r.
\]

The above discussion proves the following

Theorem. Let \(W \neq 1 \) be an arbitrary word in an eighth-group \(G \) where \(l(W) = n \) and \(r \) is the length of the largest defining relator in \(G \). Then \(W \) is a power if and only if \(W \) is conjugate to \(A^m \) where \(m \) and \(A \) satisfy (1) and (2).

Since the conjugacy problem has been solved for eighth-groups by Greendlinger in [2], and since there exist only a finite number of words in any given length, the above theorem gives us our algorithm.

Bibliography

Polytechnic Institute of Brooklyn