PRIME MATRIX RINGS

R. E. JOHNSON

If \(F \) is a ring, then an obvious way to construct subrings of \((F)_n\), the ring of all \(n \times n \) matrices over \(F \), is to choose additive subgroups \(F_{ij} \) of \(F \) such that

\[
F_{ij} F_{jk} \subset F_{ik}, \quad i, j, k = 1, \ldots, n,
\]

and then form the ring

\[
R = \sum_{i,j=1}^{n} F_{ij} e_{ij}
\]

where the \(e_{ij} \) are the usual unit matrices. For example, we could select \(n \) left ideals \(A_1, \ldots, A_n \) of either \(F \) or a subring of \(F \) and then let \(F_{ij} = A_j, i, j = 1, \ldots, n \).

If \(F \) is a (skew) field and the \(F_{ij} \) satisfying (1) are all nonzero, then \(R \) defined by (2) is easily shown to be a prime ring. The main result of this paper (1.3) is that if \(F \) is a right ring of quotients of \(F_1 \) then \((F)_n \) is a right ring of quotients of \(R \) and there exists a subring \(K \) of \(F \) and a nonzero diagonal matrix \(d \in R \) such that \((K)_n \) is a subring of \(d R d^{-1} \) and \(F \) is a ring of quotients of \(K \). This result is used to give new proofs of the Faith-Utumi theorem [2] and of Goldie's theorem [1].

1. Prime matrix rings. If \(A \) is a subset of a ring, then let \(A' = \{ x \in A \mid x \neq 0 \} \). If \(A \) and \(B \) are subsets of a field, then denote by \(AB^{-1} = \{ ab^{-1} \mid a \in A, b \in B' \} \). The notation \(R \leq S \) is used to show that \(S \) is a right ring of quotients of \(R \); that is, that \(R \) is a subring of \(S \) and a \(R \cap S \neq 0 \) for all \(a \in S' \). It is readily seen that if \(F \) is a field and \(K \) is a subring of \(F \), then \(K \leq F \) iff \(KK^{-1} = F \).

1.1. Lemma. Let \(F \) be a field and \(A \) be a subring of \(F \) for which \(AA^{-1} = F \). If \(B \) and \(C \) are nonzero right \(A \)-modules contained in \(F \), then \(B \cap C \neq 0 \) and \(BC^{-1} = F \).

Proof. For any \(f \in F' \), \(b \in B' \), and \(c \in C' \), there exist \(a_i \in A \) such that \(b^{-1} fc = a_0 a_1^{-1} \). Hence, \(f = (ba_1)(ca_2)^{-1} \in BC^{-1} \). We conclude that \(BC^{-1} = F \). If \(f = 1 \), then \(ba_1 = ca_2 \) and evidently \(B \cap C \neq 0 \).

1.2. Theorem. Let \(F \) be a field, \(\{ F_{ij} \mid i, j = 1, \ldots, n \} \) be a set of

Received by the editors July 30, 1964.

\[1\] Research supported in part by NSF Grant G-24155.
nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). Then $R \subseteq (F)_n$ iff $F_1 \subseteq F$.

Proof. If $R \subseteq (F)_n$, then for every $d \in F'$ there exists $a \in R$ such that $(de_1)a \in R'$. If $a = \sum a_{ij}e_{ij}$ where $a_{ij} \in F_{ij}$, then $da_{ij} \subseteq F'_{ij}$ and $d \subseteq F_{ij}F_{ij}^{-1}$ for some j. Since $f_{g^{-1}} = (fh)(gh)^{-1}$ for all $f, g \in F_{ij}$ and $h \in F_{ji}$, evidently $F_1F_{ij}^{-1} \subseteq F_1F_{ii}^{-1}$ for all j. Hence, $F \subseteq F_1F_{ii}^{-1}$ and $F_1 \subseteq F$.

Conversely, if $F_1 \subseteq F$ then $F_1F_{ii}^{-1} = F$ for all i and j by 1.1. Actually, $fg^{-1} = (fh)(gh)^{-1}$ for all $f \in F_{ii}', g \in F_{ii}', h \in F_{ki}$ so that $F_1F_{ki}^{-1} = F$ for all i, j, k. Since each F_{ik} is a right F_{kk}-module, the F_{kk}-module $F_k = \bigcap_{i=1}^n F_{ik}$ is nonzero and $F_kF_{kk}^{-1} = F$ by 1.1. Clearly each F_k is a subring of F. Thus, R contains a subring S of the form

\begin{equation}
S = \sum_{i,j=1}^n F_{ij}e_{ij}
\end{equation}

where the F_{ij} are subrings of F satisfying

\begin{equation}
F_iF_j \subseteq F_{ij}, \quad F_i \subseteq F, \quad i, j = 1, \ldots, n.
\end{equation}

To complete the proof of 1.2, we need only prove that $S \subseteq (F)_n$. Let $a = \sum a_{ij}e_{ij} \in (F)_n$, with $a_{ij} \neq 0$. Then there exist $b_i \in F_{ii}'$ such that $a_{ii}b_i \in F_i$ for each i. Since $b_1F_i \cap \cdots \cap b_nF_i \neq 0$ by 1.1, there exists some $b \in F_i'$ such that $a_{ii}b \in F_i$ for each i. Hence, $a(be_{ii}) = \sum a_{ii}be_{ii} \in S$. Therefore, $S \subseteq (F)_n$ and 1.2 is proved.

It is easy to give an example showing that $F_1 \cap \cdots \cap F_n$ might be zero in ring S of (3). Thus, if D is a right Ore domain having right field of quotients F (i.e., $DD^{-1} = F$) but D is not a left Ore domain (i.e., $D^{-1}D \neq F$), then there exist nonzero left ideals F_i of D such that $F_1 \cap \cdots \cap F_n = 0$. Still, $S \subseteq (F)_n$ if S is defined by (3). Although the intersection of the F_k might be zero, the intersection of the corresponding subrings of F in some isomorphic image of S in $(F)_n$ is nonzero as we shall now show.

Let S be a subring of $(F)_n$ defined by (3) and (4) above, and let $g_i \in F_i', \ i = 1, \ldots, n$. If $f_k = g_1g_2 \cdots g_k, \ k = 1, \ldots, n$, then clearly each $f_k \in F_k'$ and $d = \sum f_{i}e_{ii}$ has inverse $d^{-1} = \sum f_{i}^{-1}e_{ii}$ in $(F)_n$. Let

\[T = dsd^{-1} = \sum_{i,j=1}^n (f_iF_{jj}^{-1})e_{ij} \]

an isomorphic image of S. Evidently $T \subseteq (F)_n$. Since $f_iaF_{ii}^{-1} = f_ig_{i+1} \cdots g_nag_2 \cdots g_1F_{jj}^{-1}$ for all $a \in F_i$, clearly

\[\bigcap_{i,j=1}^n f_iF_{jj}^{-1} = f_nF_1F_1^{-1}. \]
If we let $K = f_n F f^{-1}$, then K is a subring of F for which $KK^{-1} = F$ by 1.1. Evidently $(K)_n \subseteq T$ and also $(K)_n \subseteq (F)_n$ by 1.2. We have proved the following result.

1.3. Theorem. Let F be a field, F be nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). If $F_{11} \subseteq F$, then there exists a subring K of F and a nonsingular diagonal matrix $d\in R$ such that $KK^{-1} = F$ and $(K)_n \subseteq dRd^{-1} \subseteq (F)_n$.

2. The annihilator ideal lattice. In order to apply the theorems of §1 to prime rings in general, we need the following lattice-theoretic results. Since we wish to use these results in another context [7], we shall state them in as general terms as possible.

Let R be a ring, L_r be the lattice of right ideals of R, and R^*_r be the right singular ideal of R. Thus, $b\in R^*_r$ iff $br = \{x\in R | bx = 0\}$ is a large right ideal; i.e., $b^r \cap A \neq 0$ for all nonzero $A \in L_r$. If $R^*_r = 0$, then we denote the lattice of closed right ideals of R by L^*_r. Thus, $A \in L^*_r$ iff A is the only essential extension of A in L_r. It is well-known that L^*_r is a complete complemented modular lattice.

If L is a lattice containing 0 and I, then a minimal (maximal) element of $L - \{0\}$ (of $L - \{I\}$) is called an atom (coatom). If $R^*_r = 0$ and L^*_r is atomic (i.e., every nonzero element of L^*_r contains an atom), then let us denote by R^*_0 the union in L_r of all atoms of L^*_r. A ring R is called (right) stable [6] iff $R^*_0 = 0$, L^*_r is atomic, and $(R^*_r)^r = 0$. Not only is every prime ring (for which L^*_r is atomic) stable, but so also is every $n \times n$ triangular matrix ring over a right Ore domain.

Another lattice associated with a ring R is the lattice J_r of annihilating right ideals of R. If $R^*_r = 0$ then J_r is a subset, although not necessarily a sublattice, of L^*_r. However, intersections are set-theoretic in both lattices.

Needless to say, the corresponding left structure of a ring R is indicated by replacing each "r" above by an "l".

The following lemma, due to Koh [3], is basic to the work of this section. Our proof is a paraphrase of Koh's proof for prime rings.

2.1. Lemma. If R is a stable ring then $R^*_0 = 0$.

Proof. If $R^*_0 \neq 0$ and $d \in (R^*_0)'$, then $Ad \neq 0$ for some atom $A \in L^*_r$ and $ad \neq 0$ for some $a \in A'$. Since $Ra \cap d'A \neq 0$, $xa \neq 0$ and $xad = 0$ for some $x \in R'$. However, a^* is a coatom of L^*_r by [4, 6.9] and therefore $(xa)^* = a^*$. This contradiction proves the lemma.

The lattices J_r and J_l are dual isomorphic under the correspondence $A \rightarrow (A')^r$, $A \in J_r$. If R is a stable ring then the lattice J_l is atomic. Actually, let us show that if A, $B \in J_l$ with $A \cap B \neq B$, then there
exists an atom \(C \in J_i \) such that \(C \subseteq B \) and \(C \cap A = 0 \). By 2.1, \(L_i^* \supset J_i \) and there exists some nonzero \(D \in L_i^* \) such that \(D \subseteq B \) and \(D \cap A = 0 \).

Since \(R \) is stable, \(ED \neq 0 \) and hence \(E \cap D \neq 0 \) for some atom \(E \in L_i^* \). If \(d \in (E \cap D)^* \), then \(d^* \) is a coatom of \(L_i^* \) by \([4, 6.9]\). Therefore, \(d^* \) is a coatom of \(J_i \) and \(C = d^* \) is an atom of \(J_i \). Clearly \(C \subseteq B \) and \(C \cap A = 0 \).

If \(B \) is any atom of \(J_i \) then \(B^* \) is a coatom of \(L_i^* \) by the proof above. Thus, if \(B \) covers \(0 \) in \(J_i \) then \(0^* = R \) covers \(B^* \) in \(L_i^* \). This is a special case of the following result.

2.2. Lemma. Let \(R \) be a stable ring and \(A, B \in J_i \). Then \(B \) is a cover of \(A \) in \(J_i \) iff \(A^* \) is a cover of \(B^* \) in \(L_i^* \).

Proof. If \(A^* \) is a cover of \(B^* \) in \(L_i^* \), then \(A^* \) is a cover of \(B^* \) in \(J_i \), and \(B \) is a cover of \(A \) in \(J_i \). Conversely, if \(B \) is a cover of \(A \) in \(J_i \) then there exists an atom \(C \in J_i \) such that \(C \subseteq B \) and \(C \cap A = 0 \). Clearly \(B = A \cup C \) in \(J_i \). Hence, \(B^* = A^* \cap C^* \). Since \(C^* \) is a coatom of \(L_i^* \) and \(A^* \subseteq C^* \), evidently \(A^* \cup C^* = R \) in \(L_i^* \). Therefore, the intervals \([C^*, R]\) and \([A^* \cap C^*, A^*]\) are isomorphic and \(A^* \) covers \(A^* \cap C^* = B^* \).

The main result of this section is as follows.

2.3. Theorem. If \(R \) is a stable ring then the lattice \(J_i \) is upper semimodular.

Proof. Let \(A, B \in J_i \) be covers of \(A \cap B \). Then \((A \cap B)^* \) covers \(A^* \) and \(B^* \) in \(L_i^* \) by 2.2. Hence, \((A \cap B)^* = A^* \cup B^* \) in \(L_i^* \). By the modularity of \(L_i^* \), \(A^* \) and \(B^* \) cover \(A^* \cap B^* \). Therefore, \(A \cup B \) covers \(A \) and \(B \) in \(J_i \) by 2.2. This proves 2.3.

If the lattice \(L_i^* \) has a finite dimension \(n \), then we call \(n \) the (right) dimension of \(R \) and write \(\dim R = n \).

2.4. Corollary. If \(R \) is a stable ring such that \(\dim R = n \), then \(J_i \) is a complemented lattice of dimension \(n \).

Proof. Every maximal chain in \(J_i \) has length by 2.2, and therefore \(\dim J_i = n \). To show that \(J_i \) is complemented, let \(A, B \in J_i \) with \(A \cap B = 0 \) and \(A \cup B = R \). Then there exists an atom \(C \in J_i \) such that \(C \cap (A \cup B) = 0 \). We claim that \(A \cap (B \cup C) = 0 \) in \(J_i \). If this is so, then by induction there exists some \(D \in J_i \) such that \(A \cap D = 0 \) and \(A \cup D = R \). Hence, \(J_i \) is complemented.

If \(A \cap (B \cup C) \neq 0 \), then there exists an atom \(E \in J_i \) such that \(E \subseteq A \cap (B \cup C) \). Then \(E \cap B = 0 \), \(E^* \supset A^* \), and \(E^* \cup B^* \cap C^* \). Clearly \(C^* \cup (A^* \cap B^*) = R \) in \(L_i^* \). Hence, \(B^* = B^* \cap [C^* \cup (A^* \cap B^*)] = (B^* \cap C^*) \cup (A^* \cap B^*) \) and \(E^* \cup B^* \), contrary to the fact that \(E \cap B = 0 \). Hence, \(A \cap (B \cup C) = 0 \).
The lattice J_1 of a stable ring R is not necessarily modular, as the following example shows.

2.5. Example. Let D be a right Ore domain which is not a left Ore domain, F be the right field of quotients of D, and $R = (D)_Z$. Clearly R is a prime ring of dimension 3. Select $g, h \in D'$ such that $Dg \cap Dh = 0$, and let

\[u = ge_{11} + e_{12}, \quad v = e_{11} + he_{11} \in R. \]

Then $u^i = Re_{33} + R(e_{11} - ge_{22})$ and $v^i = Re_{11} + R(he_{11} - e_{13})$. Since re_{11} and re_{33} are atoms of J_1, evidently u^i and v^i are coatoms of J_1. However, $u^i \cup v^i = R$ and $U^i \cap v^i = 0$, and therefore J_1 is not modular (since it is not lower semi-modular).

3. Goldie prime rings. A prime ring R such that $R^2 = 0$ and $\dim R = n > 1$ is called a Goldie prime ring. Such rings were studied by Goldie in [1]. By 2.4, J_1 is a complemented, upper semi-modular lattice for such a ring.

Let R be a Goldie prime ring and $n = \dim R$. By 2.4, there exists an independent set \{ B_i, \cdots, B_n \} of atoms of J_1 (i.e., $(B_i \cup \cdots \cup B_i) \cap B_{i+1} = 0$, $i = 1, \cdots, n - 1$). Hence, \{ B_i, \cdots, B_n \} is an independent set of coatoms of L^*_1 (i.e., $(B_i \cap \cdots \cap B_i) \cup B_{i+1} = R$, $i = 1, \cdots, n - 1$). If we let

\[A_j = \bigcap_{i=1, i \neq j}^n B_i, \quad j = 1, \cdots, n, \]

then we may show lattice-theoretically that \{ A_1, \cdots, A_n \} is an independent set of atoms of L^*_1. What is more important, the A_i are in J_r. Clearly

\[B_i = \bigcup_{j=1, j \neq i}^n A_i, \quad i = 1, \cdots, n. \]

A Goldie prime ring R of dimension n has a full ring Q of linear transformations of an n dimensional vector space over a field as a ring of quotients. This is a weaker result than Goldie's theorem [1, Theorem 11]. It is well-known that the lattices $L^*_1(Q)$ and $L^*_1(R)$ are isomorphic under the correspondence $B \mapsto B \cap R$, $B \in L^*_1(Q)$. (See [5] for proofs.)

Corresponding to the independent set \{ A_1, \cdots, A_n \} of atoms of $L^*_1(R)$ defined above is an independent set \{ C_1, \cdots, C_n \} of atoms of $L^*_1(Q)$. By [8, Proposition 5, p. 52], there exists a set \{ e_{ij} \} of n^2 matrix units in Q such that $C_i = e_{ii}Q$, $i = 1, \cdots, n$. Hence, $A_i = (e_{ii}Q) \cap R$ and $B_i = (\sum_{j \neq i} e_{ij}Q) \cap R$, $i = 1, \cdots, n$. Relative to the chosen set of matrix units of Q, we can find a field F commuting with the e_{ij} such that [8, Proposition 6, p. 52]
\[Q = \sum_{i,j=1}^{n} F_{ij}e_{ij} \cong (F)_n. \]

Since \(B'_t \) (in \(R \)) = \([B'_t \) (in \(Q \)] \cap R \) and \(B'_t \) (in \(Q \)) \(\subseteq L^*_t(Q) \), evidently \(B'_t \) (in \(Q \)) \(\subseteq \sum_{i=1}^{n} e_{ij}Q \). Hence, \(B_i \cap Qe_{ij} \cap R \) for each \(i \). Actually, \(B_i = Qe_{ij} \cap R \) for each \(i \) since \([Qe_{ij} \cap R]B'_t = 0 \). Since \(A_iB_j \neq 0 \) for all \(i \) and \(j \), we see that

\[\bigcap_{i,j} A_i \cap B_j = F_{ij}e_{ij}, \quad i, j = 1, \ldots, n \]

for some nonzero additive subgroups \(F_{ij} \) of \(F \) satisfying (1). Hence,

\[S = \sum_{i,j=1}^{n} F_{ij}e_{ij} \]

is a prime subring of \(R \).

Each nonzero left ideal of \(R \) has \(R \) as a right ring of quotients. In particular, \(B_i \subseteq R \) and \(L^*_t(B_i) \cong L^*_t(R) \). Therefore, \(\{F_{t1}e_{i1}, \ldots, F_{n1}e_{n1}\} \) is an atomic basis of \(L^*_t(B_i) \) and \(F_{t1}e_{i1} + \cdots + F_{n1}e_{n1} \subseteq B_i \subseteq R \). Consequently, \(S \subseteq R \subseteq (F)_n \). Now we can apply 1.3 to obtain the following result.

3.1. FAITH-UTUMI THEOREM

Every Goldie prime ring \(R \) of dimension \(n \) has associated with it a field \(F \) and a subring \(K \) of \(F \) such that \(K \subseteq F \) and \((K)_n \subseteq R \subseteq (F)_n \).

An immediate corollary of 3.1 is Goldie's theorem, which states that \((F)_n = \{ab^{-1} \mid a, b \in R, b \text{ regular}\} \). In fact, the following stronger result (due to Faith) holds.

3.2. THEOREM

If \(R \) is a Goldie prime ring of dimension \(n \) and \(F \) is its associated field, then there exists a subring \(K \) of \(F \) such that \((F)_n = \{ak^{-1} \mid a \in R, k \in K'\} \).

Proof. If \(c \in (F)_n \), say \(c = \sum a_{ij}b_{ij}^{-1}e_{ij} \) where \(a_{ij}, b_{ij} \in K \), then \(ck = a \in (K)_n \) for any nonzero \(k \in b_{ij}K \) and \(c = ak^{-1} \) as desired.

Bibliography

University of Rochester

POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = \langle a_1, \ldots, a_n; R_1(a_1) = 1, \ldots, R_m(a_n) = 1 \rangle,$$

where (i) each defining relator is cyclically reduced and (ii) if B_i and B_j are cyclic transforms of R_i and R_j, then less than one-eighth of the length of the shorter one cancels in the product $B_i^{-1}B_j$, unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group $F(p; n_1, \ldots, n_d; m)$, see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \ldots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

Remark. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word V^* conjugate to V by writing the word V in a circle and then reducing. Such a word V^* will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.