Then the conditions on $|x| < 1$ require that $f^{1,2}$ should be a solution of (1). If $\det(I - ia) \neq 0$ we can find a solution while if $\det(I - ia) = 0$ there exists no solution.

References

Carnegie Institute of Technology

A REMARK ON AN ARITHMETIC THEOREM OF CHEVALLEY

H. Bass

1. Let k be an algebraic number field with ring of integers \mathcal{O}, and let E be a finitely generated subgroup of the multiplicative group, k^*. All but finitely many primes \mathfrak{p} are "prime to $E,"$ i.e., the units of $\mathcal{O}_{\mathfrak{p}}$ contain E. An ideal a is called "prime to $E"$ if its prime divisors are. In this case we have a natural homomorphism

$$E \rightarrow (\mathcal{O}/a)^*$$

whose kernel, the congruence subgroup $\{a \in E | a \equiv 1 \mod a\}$, is evidently of finite index. We denote the group of all (complex) roots of unity by \mathbb{Q}/\mathbb{Z}.

Theorem. Let $\chi : E \rightarrow \mathbb{Q}/\mathbb{Z}$ be a character of E. Then there are infinitely many prime ideals \mathfrak{p} of k, prime to E, such that χ factors through a character of $(\mathcal{O}/\mathfrak{p})^*$, i.e., such that $\ker(E \rightarrow (\mathcal{O}/\mathfrak{p})^*) \subset \ker \chi$.

It follows immediately that if U is a subgroup of finite index in E then $\ker(E \rightarrow (\mathcal{O}/a)^*) \subset U$ for a suitable a, which we may take to be square free. This is the form of the theorem proved by Chevalley in [2]. That a may be taken square free is implicit in his proof. The following corollary paraphrases Chevalley's theorem.

Corollary 1 (Chevalley). If we embed E in $\prod_{\mathfrak{p} \text{ prime to } E} (\mathcal{O}/\mathfrak{p})^*$,
its closure is naturally identical with the completion, \(\hat{E} \), of \(E \) in the topology defined by all subgroups of finite index.

I was led to these matters after proving the following corollary. I am indebted to J.-P. Serre for referring me to Chevalley's paper.

Corollary 2. The algebraic closure of a finite field is generated, as a field, by roots of unity of prime order. The same is (therefore) true of the maximal unramified extension of a \(p \)-adic field.

Proof. Let \(\overline{F}_p \) be the algebraic closure of \(F_p = \mathbb{Z}/p\mathbb{Z} \), and let \(H \) be the subgroup of \(\overline{F}_p^* \) generated by roots of unity of prime order. Let \(L = F_p(H) \) and let \(G = G(F_p/F_p) \), the Galois group. To show that \(L = F_p \) it suffices, by Galois theory, to show that the restriction map, \(G \to \text{Aut}(H) \), is a monomorphism, since \(L \) is the fixed field of its kernel.

Now \(G \) is topologically isomorphic to \(\mathbb{Z} \), with generator \(\Phi = \text{Frobenius (pth power)} \). \(H \) is isomorphic to the additive group \(\mathbb{Q}^p \mathbb{F}_q \), so \(\text{Aut}(H) = \prod_{q \neq p} \mathbb{F}_q^* \). Under this identification, \(G \to \prod_{q \neq p} \mathbb{F}_q^* \) sends \(f \) to the element with all coordinates equal to \(p \). With \(E \) the subgroup of \(\mathbb{Q}^* \) generated by \(p \), our assertion now follows from Corollary 1.

Q.E.D.

In case \(k = \mathbb{Q} \) the theorem above was proved by Mills in [3] in a slightly more precise form. Mills' argument is essentially the same as Chevalley's (of which Mills was presumably unaware). This consists of reducing the theorem to a computation of \((F^*)^m \cap k^* \), \(F \) being the field over \(k \) generated by a primitive \(m \)th root of unity. This reduction is repeated, for the reader's convenience, in the next section.

The preciseness of the final theorem is then a direct reflection of the precision with which \((F^*)^m \cap k^* \) is computed.

2. We show here (following Chevalley) how to deduce the Theorem from the next proposition, whose proof will be given in part 3.

Proposition. Given \(N > 0 \), then there is an \(m > 0 \) such that, if \(F \) is the field generated over \(k \) by a primitive \(m \)th root of unity, we have

\[
(F^*)^m \cap k^* \subseteq (k^*)^N.
\]

Proof of the theorem. Recall that we have \(E \subseteq k^* \) and \(\chi: E \to \mathbb{Q}/\mathbb{Z} \). We must find \(p \) such that \(\ker(E \to (\mathbb{Q}/p)^*) \subseteq \ker \chi \). Choose \(N > 0 \) so that \(E \cap (k^*)^N \subseteq \ker \chi \). This is possible since \(\chi(E) \) is finite and since \(k^* \) is the product of a free abelian with a finite group. Now choose \(m > 0 \) as in the proposition above. Then \((F^*)^m \cap E \subseteq \ker \chi \). It follows that \(\chi \) factors via \(E \to F^*/(F^*)^m \); i.e., there is a character \(\chi': F^* \to \mathbb{Q}/\mathbb{Z} \) of order \(m \) such that \(\chi' | E = \chi \). Let \(L = F(E^{1/m}) \), the
(finite) extension generated by mth roots of elements of E. It follows from Kummer theory (see Artin [1]) that there is an $s \in G(L/F)$ such that $s(a^{1/m}) = a^{1/m} \chi(a)$ for all $a \in E$. By the Chebotarev density theorem there exist infinitely many primes \mathfrak{P} of F such that $s = ((L/F)/\mathfrak{P})$, the Artin symbol in the abelian extension L/F (see Serre [4, p. 34]). Choose such a \mathfrak{P} prime to m. Then if $a \in E$ and $a \equiv 1 \mod \mathfrak{P}$, a is an mth power in the local field $F_\mathfrak{P}$. Hence the local degrees at \mathfrak{P} of $F(a^{1/m})/F$ are all one. It follows that $s = ((L/F)/\mathfrak{P})$ fixes $a^{1/m}$ and, consequently, $\chi(a) = 1$. Thus, the prime p of k that \mathfrak{P} divides solves our problem, and we have proved the theorem.

3. The proposition will be proved in a sequence of lemmas which give some more specific information.

Lemma 1. Let F/k be a finite field extension and q an integer with prime factorization $\prod p_i^{e_i}$.

(a) $\left(F^* \right)^{q} \cap k^* = \prod \left[\left(F^* \right)^{p_i^{e_i}} \cap k^* \right]$.

(b) If $d = [F : k]$ is prime to q, then $\left(F^* \right)^{d} \cap k^* = (k^*)^{q}$.

Proof. (a) is obvious. (b): If $x \in \left(F^* \right)^{q} \cap k^*$, take norms to obtain $x^d \in (k^*)^q$. g.c.d. $(d, q) = 1 \Rightarrow x \in (k^*)^q$.

Now we fix some notation: k_m denotes the field over k generated by a primitive mth root of unity.

Lemma 2. If $p \neq 2$, $(k^*)^a \cap k^* = (k^*)^a$. $(k^*)^a \cap k^* = (k^*)^a \cap k^* \subset (k^*)^{a-1}$, where $a = \min (2, e)$. Hence, if $k_4 \subset k$, $(k_2^*)^a \cap k^* = (k^*)^a$.

Proof. See Chevalley [2, pp. 37, 38].

For a prime p we define

$$e(p) = e(p, k)$$

to be the largest integer e such that, for each prime p of k above p, the local field at p contains k_p. Note that if $e > 0$ and $p \neq 2$ this implies p is ramified; hence $e(p) = 0$ for all but finitely many p.

Lemma 3. Suppose $n \geq e = e(p)$. Then for any $m > 0$

$$(k_m^*)^m \cap k^* \subset \left(k_p^* \right)^m \cap k^*;$$

unless $p = 2$ and $e = 1$. In this case replace the right side by $(k^*)^{2e-2}$.

Proof. Write $m = p^r q$ with q prime to p. We apply Lemma 2 to k_q to obtain $(k_q^*)^m \cap k_q^* \subset (k_q^*)^m$, where $h = n$ for p odd, and which we discuss below for $p = 2$. Choose f maximal so that $k_p \subset k_q$. If F is the local field of k at a prime dividing p then $F \subset F_p \subset F_q$. However, the big extension is unramified, and the small one totally rami-
fied. Hence $F = F_p^f$, so, by definition of $e = e(p)$, we have $f \leq e$.

Suppose $y \in k^*_p$ is such that $y^{p^h} \in k^p$. If $s \in G(k_q^p/k_q)$ then $sy = yz$ with $z^{p^h} = 1$. By definition of f, therefore, $z^{p^f} = 1$. It follows that $sy^{p^f} = y$, so $y^{p^f} \in k^p$. Writing $y^{p^h} = (y^{p^f})^{p^h-f}$ we have therefore shown that

$$(k^*_p)^{p^h} \cap k^*_p \subseteq (k^*_p)^{p^{h-f}} \subseteq (k^*_p)^{p^{h-f-c}},$$

the second inclusion ensuing from $f \leq e$. We have thus descended the field tower, $k \subseteq k^p \subseteq k_q \subseteq k_m$, and proved our assertion in the case $h = n$. By Lemma 2 this is the case for p odd, and for $p = 2$ provided $k_4 \subseteq k_q$. In the remaining case we must have $p = 2$ and $f = 1$, so $k^p = k$ and we can take $h = n - 1$. The proof then yields $(k^*_p)^{2^{n-1}} \cap k^*_p \subseteq (k^*)_2^{2^{n-2}} = (k^*)_2^{2^{n-2}}$.

Combining Lemmas 1, 2, and 3 we have:

Corollary. Let

$$f(p) = \begin{cases} e(p) & \text{for } p \neq 2, \\ e(2) + 2 & \text{for } p = 2. \end{cases}$$

Then if m has prime factorization $\prod_{p \in S} p^\nu(p)$, with $\nu(p) \geq f(p)$, and if $m_0 = \prod_{p \in S} p^\nu(p)$, then

$$(k^*_m)^m \cap k^* \subseteq (k^*)_m^{m_0}.$$

Since m_0 depends only on the prime divisors of m, and not their exponents, it is clear that the proposition of §2 follows from the corollary.

References