LOWER BOUNDS FOR SOLUTIONS OF HYPERBOLIC INEQUALITIES

HAJIMU OGAWA

1. Introduction. Let D denote a bounded domain in E^n and I the interval $1 \leq t < \infty$. Let L be the second-order hyperbolic operator

\begin{equation}
L = \frac{\partial^2}{\partial t^2} - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right)
\end{equation}

defined on $R=D \times I$. Introducing the norms

\begin{align*}
\|u(t)\|_0 &= \int_D u^2 \, dx, \\
\|u(t)\|_1 &= \int_D \left[\left(\frac{\partial u}{\partial t} \right)^2 + \sum_{i=1}^{n} \left(\frac{\partial u}{\partial x_i} \right)^2 \right] \, dx,
\end{align*}

for functions u in $C^2(R)$, Protter [4] investigated the asymptotic behavior of solutions of inequalities of the form

\begin{equation}
\|u(t)\|_0^2 \leq \alpha(t) \|u(t)\|_1.
\end{equation}

If Γ is the boundary of D, he found that any solution of (1.2) which satisfies the conditions

\begin{equation*}
u = 0 \quad \text{on} \quad \Gamma \times I,
\end{equation*}

\begin{equation*}
\lim_{t \to \infty} t^\alpha \|u(t)\|_1 = 0 \quad \text{for all} \quad \alpha > 0,
\end{equation*}

must vanish identically, provided that

\begin{equation}
\phi(t) = O(t^{-1}), \quad \frac{\partial a_{ij}}{\partial t} = O(t^{-1}).
\end{equation}

Conditions for other types of asymptotic behavior have also been studied by Protter [5].

It is the purpose of this paper to find sufficient conditions for the existence of lower bounds of the form

\begin{equation*}
\|u(t)\|_1 \geq C \|u(t_0)\|_1 [K(t)]^{-1}, \quad t \geq t_0 \geq 1,
\end{equation*}

where C is a positive constant and K is a differentiable function satisfying

Received by the editors July 22, 1964.

853
In particular, it will be shown that in the case \(K(t) = t^a \), a lower bound exists under conditions somewhat weaker than (1.3). The results will also be extended to symmetric hyperbolic operators.

The author wishes to thank M. H. Protter for a number of valuable suggestions.

2. Second-order hyperbolic inequalities. Let \(L \) be the operator defined by (1.1). We assume \(a_{ij} = a_{ji} \in C^1(\mathbb{R}) \), and suppose that there are positive constants \(m \) and \(M \) such that

\[
\sum_{i=1}^{n} \xi_i^2 \leq \sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j \leq M \sum_{i=1}^{n} \xi_i^2.
\]

For functions \(u \in C^2(\mathbb{R}) \) we introduce the norm

\[
\|u(t)\|_1 = \int_{\Omega} \left[\left(\frac{\partial u}{\partial t} \right)^2 + \sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \right] dx,
\]

which is equivalent to the norm \(\|u(t)\|_1 \). If \(u = 0 \) on \(\Gamma \times I \), it is easily seen that

\[
\frac{d}{dt} \|u(t)\|_1^2 = 2 \int_{\Omega} \frac{\partial u}{\partial t} L u dx + \int_{\Omega} \sum_{i,j=1}^{n} \frac{\partial a_{ij}}{\partial t} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} dx.
\]

Hence for any function \(K \) satisfying (1.4), we have the identity

\[
\frac{d}{dt} [K(t) \|u(t)\|_1^2] = 2K(t)K'(t)\|u(t)\|^2 + 2K^2(t) \int_{\Omega} \frac{\partial u}{\partial t} L u dx + K^2(t) \int_{\Omega} \sum_{i,j=1}^{n} \frac{\partial a_{ij}}{\partial t} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} dx.
\]

(2.1)

Assume \(u \) is a solution of

\[
\|Lu(t)\|_0 \leq \phi(t) \|u(t)\|_1,
\]

such that \(u = 0 \) on \(\Gamma \times I \), and let \(\psi \) be a function satisfying

\[
\int_{\Omega} \sum_{i,j=1}^{n} \frac{\partial a_{ij}}{\partial t} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} dx \leq 2\phi(t) \|u(t)\|_1^2.
\]

(2.3)

Applying Schwarz's inequality and (2.2) to the second term on the right-hand side of (2.1), and applying (2.3) to the third term of the same expression, we find that
where we have set \(f = \phi + \psi \). It follows that

\[
\frac{d}{dt} \left[\frac{K^2(t)}{K(t)} \| u(t) \|^2 \right] \geq 2K^2(t) \| u(t) \|^2 \left[\frac{K'(t)}{K(t)} - f(t) \right],
\]

if \(\| u(t) \| \neq 0 \).

Theorem. Let \(u \) be a solution of (2.2) such that \(u = 0 \) on \(\Gamma \times I \). If \(\| u(t_0) \| \neq 0 \) and either

(i) \((K'/K)^{1/p-1} f \in L_p(1, \infty) \) for some \(p \), \(1 \leq p < \infty \),

or

(ii) \(Kf'/K' \in L_\infty(1, \infty) \) and \(\| Kf'/K' \|_\infty \leq 1 \),

then there exists a positive constant \(C \) such that

\[
(2.5) \quad \| u(t) \| \geq C \| u(t_0) \| (K(t))^{-1}, \quad t \geq t_0 \geq 1.
\]

Proof. We first assume that \(\| u(t) \| \neq 0 \) for \(t \geq t_0 \). Integrating (2.4) between \(t_0 \) and \(t \) we obtain

\[
(2.6) \quad \log \frac{K(t)}{K(t_0)} \| u(t) \| \geq \log \frac{K(t)}{K(t_0)} - \int_{t_0}^{t} f ds.
\]

In case (i), Hölder's inequality implies that

\[
\left| \int_{t_0}^{t} f ds \right| \leq \left[\int_{t_0}^{t} \left(\frac{K'}{K} \right)^{-1/q} f^{p/q} ds \right] \left[\int_{t_0}^{t} \frac{K'}{K} ds \right]^{1/q}
\]

\[
\leq N \left[\log \frac{K(t)}{K(t_0)} \right]^{1/q},
\]

where \(N \) is a constant and \(1/p + 1/q = 1 \). Hence, since \(\lim_{t \to \infty} K(t) = \infty \), we see that the right-hand side of (2.6) is bounded below, and (2.5) follows. Under case (ii), the right-hand side of (2.6) is easily seen to be non-negative.

To prove that the assumption \(\| u(t) \| \neq 0 \) is valid for all \(t \geq t_0 \), we suppose the contrary. Let \(t_1 > t_0 \) be the least value of \(t \) for which \(\| u(t) \| = 0 \). Then from the preceding result we find that (2.5) holds for \(t_0 \leq t < t_1 \). By the continuity of the norm, we must have \(\| u(t_1) \| \neq 0 \). This completes the proof of the theorem.
If \(K(t) = t^a, \alpha > 0 \), conditions (i) and (ii) become: either \(t^{1-1/p} \in L_p(1, \infty) \) for some \(p, 1 \leq p < \infty \), or \(tf \in L_\infty(1, \infty) \) and \(\| f \|_\infty \leq \alpha \), which include Protter's conditions (1.3). For \(K(t) = e^{at}, \alpha > 0 \), the conditions for the corresponding lower bound are: \(f \in L_p(1, \infty) \) for some \(p, 1 \leq p < \infty \), or \(f \in L_\infty(1, \infty) \) and \(\| f \|_\infty \leq \alpha \). These include the conditions obtained by Protter in [5], and are comparable to those found by Protter [3], Cohen and Lees [2] and Agmon and Nirenberg [1] for solutions of parabolic inequalities.

3. Symmetric hyperbolic inequalities. Let \(u \) be a \(k \)-component vector function in \(C^1(R) \) and denote the components of \(u \) by \(u^i, j = 1, 2, \cdots, k \). For such functions we define

\[
Lu = A_0 \frac{\partial u}{\partial t} + \sum_{i=1}^{n} A_i \frac{\partial u}{\partial x_i},
\]

where the \(A_i, i = 0, 1, \cdots, n \), are symmetric \(k \)-by-\(k \) matrices with elements in \(C^1(R) \), and \(A_0 \) is positive definite. We take as norms the quantities

\[
||u(t)||_0^2 = \int_D (u, u) dx,
\]

\[
||u(t)||^2 = \int_D (A_0 u, u) dx,
\]

with

\[
(u, v) = \sum_{j=1}^{k} u^j v^j.
\]

Since \(A_0 \) is symmetric, we have

\[
\frac{d}{dt} ||u(t)||^2 = \int_D \left(2 A_0 \frac{\partial u}{\partial t} + \frac{\partial A_0}{\partial t} u, u \right) dx
\]

\[
= \int_D \left(2 Lu - 2 \sum_{i=1}^{n} A_i \frac{\partial u}{\partial x_i} + \frac{\partial A_0}{\partial t} u, u \right) dx.
\]

Similarly, it follows that

\[
\int_D \left(A_i \frac{\partial u}{\partial x_i}, u \right) dx = -\frac{1}{2} \int_D \left(\frac{\partial A_i}{\partial x_i}, u \right) dx,
\]

for functions \(u \) which vanish on the boundary \(\Gamma \times I \). Thus, defining
we find that

\[
\frac{d}{dt} ||u(t)||^2 = \int_D (2Lu + Bu, u)dx.
\]

Suppose \(u\) is a solution of (2.2) and \(u\) vanishes on \(\Gamma \times I\). Let \(\psi\) be a function satisfying

\[
\left| \int_D (Bu, u)dx \right| \leq 2\psi(t)||u(t)||^2.
\]

Then the identity (3.1) implies that \(u\) satisfies the inequality (2.4), so the theorem of §2 is also valid in the present case.

Bibliography

University of California, Berkeley and

University of California, Riverside