INNER AND OUTER FUNCTIONS ON RIEMANN SURFACES

MICHAEL VOICHICK1 AND LAWRENCE ZALCMAN

1. Introduction. In this paper we generalize to Riemann surfaces the factorization theory for functions in the Hardy classes, H^p, on the unit disk.

Let R be a region on a Riemann surface with boundary Γ consisting of a finite number of simple closed analytic curves such that $R \cup T$ is compact and R lies on one side of Γ. For $1 \leq p < \infty$ $H^p(R)$ is the class of functions F analytic on R such that $|F|^p$ has a harmonic majorant. $H^\infty(R)$ is the class of bounded analytic functions on R. The above classes are the usual generalizations of the Hardy classes on the disk (cf. [4], [5], and [6]). However, to obtain a factorization of these functions which closely parallels the factorization on the disk we are led to more general classes of functions. To this end, we say that a (multiple-valued) analytic function F on R is multiplicative if $|F|$ is single-valued and define $MH^p(R)$, $1 \leq p < \infty$, to be the class of multiplicative analytic functions F on R such that $|F|^p$ has a harmonic majorant. Also, we define $MH^\infty(R)$ to be the class of bounded multiplicative functions on R.

Let $d\mu$ be the harmonic measure on T with respect to some fixed point $t_0 \in R$. If $F \in MH^p$ then $|F|$ has nontangential boundary values $|F|$ a.e. $[d\mu]$ on Γ. Moreover, $|F|^p \in L^p(\Gamma, \, d\mu)$ and $\log |F|^p \in L^1(\Gamma, \, d\mu)$ if $F \neq 0$. These facts follow easily from the corresponding results on the disk. (Cf. [10, p. 496].)

We say $F \in MH^p(R)$ is an outer function if

$$\log |F(t_0)| = \int \log |F|^p \, d\mu.$$

$\Phi \in MH^\infty(R)$ is an inner function if $|\Phi|^p = 1$ a.e. on Γ. A nonvanishing inner function is said to be a singular function. An inner function, B, is said to be a Blaschke product if

$$|B(t)| = \exp \left[- \sum_k \rho_k G(t, t_k) \right]$$

for all $t \in R$, where G is the Green's function for R, $\{t_k\}$ is a sequence of points on R, and $\{\rho_k\}$ is a sequence of non-negative integers. When

Received by the editors December 28, 1964.
1 Partially supported by the Carnegie Corporation.
Theorem 1. Let $F \in M\mathcal{H}^p(R)$. Then $|F| = |B||S||F_1|$ where B is a Blaschke product, S is a singular function, and F_1 is an outer function in $M\mathcal{H}^p(R)$. These factors are unique up to multiplicative constants of modulus one.

Since $\mathcal{H}^p(R) \subset M\mathcal{H}^p(R)$, this theorem subsumes a factorization of functions in $\mathcal{H}^p(R)$. However, the factors of a single-valued function in $\mathcal{H}^p(R)$ need not be single-valued.

Theorem 1 is stated in terms of the moduli of functions since there is no natural way to define the product of multiplicative functions; that is, the product would depend on the branches chosen.

In our proof we shall make use of the factorization on the disk. A convenient reference for this is [3].

It should be remarked that results related to ours are in [7] for R an annulus and in [2] for the general case.

2. Proof of Theorem 1. Let $K = \{z \mid |z| < 1\}$ and $T: K \to R$ be a universal covering map of R. Let $Q = \{q\}$ be the group of fractional linear transformations such that $T \circ q = T$. A function f, analytic on K, is said to be modulus invariant if $|f \circ q| = |f|$ for all $q \in Q$. It is easy to see that f is modulus invariant on K if, and only if, $f \circ T^{-1}$ is multiplicative on R. Also, for f modulus invariant, $f \in \mathcal{H}^p(K)$ if, and only if, $f \circ T^{-1} \in M\mathcal{H}^p(R)$. For $F \in M\mathcal{H}^p(R)$ and $f \circ T^{-1} = F$ let $f = b{s_1}$ where b is a Blaschke product, s is a singular function, and f_1 is an outer function in $\mathcal{H}^p(K)$. Then f is modulus invariant and by Lemma 4.6 in [10] bs and f_1 are also modulus invariant.

Lemma. b is modulus invariant.

Proof. First observe that if z is a zero of f then $q(z)$ is a zero of f with the same multiplicity for each $q \in Q$. Thus $b \circ q/b \in \mathcal{H}^\infty(K)$ for each $q \in Q$ since b and $b \circ q$ have the same zeros with the same multiplicities. Then for all $q \in Q$ $b/b \circ q = (b \circ q^{-1} \circ q)/(b \circ q) \in \mathcal{H}^\infty(K)$. It follows that $|b| = |b \circ q|$ for all $q \in Q$.

Let Δ be the fundamental domain of Q and E the union of the free sides of Δ; that is, $E = \Delta \cap \{1 \leq |z| \leq 1\}$. Then the harmonic measure $d\mu$ corresponds to the measure

$$dm(\theta) = \frac{1}{2\pi} \sum_{q \in Q} \frac{1}{e^{i\theta} - q(z_0)}^2 \, d\theta$$

on E where $z_0 \in \Delta$ and $T(z_0) = t_0$. (Cf. [9, pp. 526, 529].) Moreover, $dm(\theta)$ and $d\theta$ are mutually absolutely continuous.
Let \(B = b \circ T^{-1}, \) \(S = s \circ T^{-1}, \) and \(F_1 = f_1 \circ T^{-1}. \) Then \(|F| = |B||S||F_1|. \) Since \(b \) is an inner function and \(s \) is a singular function, it is immediate by virtue of the relation between \(\partial \theta \) and \(dm(\theta) \) that \(B \) is an inner function and \(S \) is a singular function. (Cf. [10, Lemma 4.4].) It remains to show that \(B \) is a Blaschke product and \(F_1 \) is an outer function.

We shall consider \(F_1 \) first. Since \(dm(\theta) \) corresponds to \(d\mu, \) it follows that

\[
\int r \log |F_1^*| \, d\mu = \int r \log |f_1^*| \, dm(\theta).
\]

Now since the set \(\bigcup_{q \in \mathcal{Q}} q(E) \) is of full measure on \(|z| = 1 \) (see [9, p. 525]) and \(|f_1^* \circ q| = |f_1^*| \) a.e. on \(|z| = 1, \) a change of variable for the integral on the right (see [9, pp. 526–528]) yields

\[
\int r \log |F_1^*| \, d\mu = \int r \log |f_1^*| \, dm(\theta) = \int_0^{2\pi} \log |f_1(z_0)| = \log |f_1(z_0)|.
\]

Therefore \(F_1 \) is an outer function.

Next we show that \(B \) is a Blaschke product. Let \(\{t_k\} \) be the set of zeros of \(F \) and \(p_k \) be the multiplicity of the zero at \(t_k. \) For each \(t_k \) let \(z_k \) be a point in \(K \) such that \(T(z_k) = t_k. \) Then for \(q \in \mathcal{Q}, \) \(b \) has a zero at \(q(z_k) \) of multiplicity \(p_k. \) All the zeros of \(b \) occur in this way. Thus,

\[
|b(z)| = \prod_k \prod_{q \in \mathcal{Q}} \left| \frac{q(z_k) - z}{1 - q(z_k)z} \right|^{p_k}.
\]

Now for \(z, z' \in K \)

\[
G(T(z), T(z')) = \sum_{q \in \mathcal{Q}} \log \left| \frac{1 - q(z')z}{z - q(z')} \right|.
\]

(See [9, p. 529].) Hence for \(t = T(z) \)

\[
|B(t)| = |b(z)| = \prod_k \exp[-p_kG(t, t_k)] = \exp \left[-\sum_k p_kG(t, t_k) \right]
\]

Thus \(B \) is a Blaschke product and \(F = |B||S||F_1| \) is the desired factorization. Since \(b, s, \) and \(f_1 \) are unique up to multiplicative constants of modulus one, the same is true for \(B, S, \) and \(F_1. \) This completes the proof of Theorem 1.
3. Closed invariant subspaces of $H^2(R)$. Let $A(R)$ be the class of (single-valued) functions continuous on R and analytic on R. A closed subspace V of $H^2(R)$ is said to be invariant if $FV \subset V$ for all $F \in A(R)$. For Φ an inner function on R let $V(\Phi) = \{ F \in H^2(R) \mid |F|^2/|\Phi|^2 \}$ has a harmonic majorant on R. In [10, Theorem 8.11] it is shown that $V(\Phi)$ is a closed invariant subspace of $H^2(R)$. The following theorem, which reduces to a well-known result of Beurling’s [1, Theorem IV, p. 253] for the case $R = K$, is proved in [10, Theorem 2].

Theorem 2. If V is a closed invariant subspace of $H^2(R)$ then there is an inner function Φ such that $V = V(\Phi)$.

By Theorem 1 we have for $F \in H^2(R)$, $|F| = |\Phi| |F_1|$ where Φ is an inner function. We call Φ an inner factor of F.

Theorem 3. Let $F \in H^2(R)$ and $V[F]$ be the smallest closed invariant subspace of $H^2(R)$ which contains F. Then $V[F] = V(\Phi)$ where Φ is an inner factor of F.

Proof. Clearly $V(\Phi) \supseteq V[F]$. By Theorem 2, $V[F] = V(\Phi_0)$ for some inner function Φ_0. Let $H \in V(\Phi)$. We must show $H \in V(\Phi_0)$. For $f = F/T$ and $h = H \circ T$ let $f = \phi h_1$ and $h = \psi h_1$ be the inner-outer factorizations of f and h respectively such that $\Phi = \phi \circ T^{-1}$. Then $\Psi = \psi \circ T^{-1}$ is an inner factor of H. Let ϕ_0 be a modulus invariant inner function such that $\Phi_0 = \phi_0 \circ T^{-1}$. Since $F \in V(\Phi_0)$, $|F|^2/|\Phi_0|^2$ has a harmonic majorant; and it follows that $f/\phi_0 \in H^2(K)$. This implies ϕ/ϕ_0 is an inner function. By a similar argument ψ/ϕ is an inner function. Thus $\psi/\phi_0 = (\psi/\phi)(\phi/\phi_0)$ is an inner function. Hence $|H|/|\Phi_0|$ is bounded. This implies $H \in V(\Phi_0)$.

Corollary 1. Let $F \in H^2(R)$. Then $V[F] = H^2(R)$ if, and only if, F is an outer function. (Cf. [7, Theorem 1, p. 128].)

The following result was proved by D. Sarason ([7, pp. 112, 128] and [8, Theorem 4, p. 596]). We offer a different proof.

Corollary 2. Let $R = \{ z \mid r < |z| < 1 \}$ and suppose $F \in H^2(R)$. Then $V[F] = H^2(R)$ if, and only if, for $0 \leq \delta \leq 1$

\[
(*) \quad \int_0^{2\pi} \log |F(re^{it})| \, dt = (1 - \delta) \int_0^{2\pi} \log |F^*(e^{it})| \, dt
\]

\[+ \delta \int_0^{2\pi} \log |F^*(re^{it})| \, dt.\]

Proof. By virtue of Corollary 1 it is sufficient to show that F satisfies $(*)$ if, and only if, F is an outer function. Suppose F is an outer function, then
\[
\int_0^{2\pi} \log |F(r^{\alpha}e^{it})| \, dt = \int_0^{2\pi} \frac{1}{2\pi} \int_{|r|} \log |F^*(w)| \frac{\partial G(w, r^{\alpha}e^{it})}{\partial n} \, dw \, dt
\]

\[
= \int |w|=1 \log |F^*(w)| \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial G(w, r^{\alpha}e^{it})}{\partial n} \, dt \, dw
\]

\[
+ \int |w|=1 \log |F^*(w)| \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial G(w, r^{\alpha}e^{it})}{\partial n} \, dt \, dw
\]

\[
= I_1(\delta) + I_2(\delta).
\]

Now \(\partial G(e^{it}, r^{\alpha}e^{it})/\partial n = \partial G(e^{-it}, r^{\alpha}e^{it})/\partial n\). Thus for \(|w|=1\)

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{\partial G(w, r^{\alpha}e^{it})}{\partial n} \, dt = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial G(e^{it}, r^{\alpha}\bar{w})}{\partial n} \, dt
\]

\[
= \text{harmonic measure of } \{ |z| = 1 \} \text{ at } r^{\alpha}\bar{w}
\]

\[
= 1 - (\log r^{\alpha}/\log r) = 1 - \delta.
\]

Thus \(I_1(\delta) = (1 - \delta) \int_0^{2\pi} \log |F^*(e^{it})| \, dt\). A similar argument shows \(I_2(\delta) = \delta \int_0^{2\pi} \log |F^*(r^{\alpha}e^{it})| \, dt\). Hence \(F\) satisfies (*)

To complete the proof we show that if \(F\) is not an outer function then (*) is not satisfied. Let \(F_1\) be an outer factor of \(F\). Then \(|F| < |F_1|\) on \(R\) and \(|F| = |F_1|\) a.e. on \(\partial R\). We have shown that \(F_1\)

satisfies (*). Thus (*) does not hold for \(F\).

REFERENCES

8. ————, Doubly invariant subspaces of annulus operators, Bull. Amer. Math. Soc. 69 (1963), 593-596.