Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Differentiability almost everywhere


Author: C. J. Neugebauer
Journal: Proc. Amer. Math. Soc. 16 (1965), 1205-1210
MSC: Primary 26.40
DOI: https://doi.org/10.1090/S0002-9939-1965-0186767-8
MathSciNet review: 0186767
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), 263-282. MR 1555405
  • [2] J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Ann. Soc. Polon. Math. 17 (1936), 42-50.
  • [3] -, Sur les séries de Fourier, Fund. Math. 27 (1936), 38-69.
  • [4] C. J. Neugebauer, Symmetric and smooth functions of several variables, Math. Ann. 153 (1964), 285-292. MR 0165046 (29:2337)
  • [5] -, Smoothness and differentiability in $ {L_p}$, Studia Math. 25 (1964), 81-91. MR 0181715 (31:5942)
  • [6] S. Saks, Theory of the integral, Warszawa-Lwow, 1937.
  • [7] E. M. Stein and A. Zygmund, Smoothness and differentiability of functions, Ann. Univ. Sci. Budapest, Sectio Math. 3-4 (1960-1961), 295-307. MR 0132135 (24:A1982)
  • [8] -, On the differentiability of functions, Studia Math. 23 (1964), 247-283. MR 0158955 (28:2176)
  • [9] A. Zygmund, Trigonometric series, 2 vols., 2nd. ed., Cambridge Univ. Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26.40

Retrieve articles in all journals with MSC: 26.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1965-0186767-8
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society