ON BERGMAN'S KERNEL FUNCTION FOR SOME UNIFORMLY ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

G. G. WEILL

1. We present here a generalization of the theory of Bergman's kernel function for uniformly elliptic partial differential equations of the divergence type

\[\nabla u \equiv \frac{\partial}{\partial x_k} (a_{ik} \partial u/\partial x_i) = 0. \]

It is known that for regular open sets \(\Omega \) in \(\mathbb{R}^n \) the expression

\[M_\Omega(u) = \int_{\Omega} a_{ik} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_k} dX \]

is a natural norm on the space of regular solutions of \(\nabla u = 0 \) vanishing at a point \(x_0 \in \Omega \). It is proved that for \(E \) compact in \(\Omega, x \in E \)

\[|u(x)|^2 \leq K(E) M_\Omega(u). \]

The existence of Bergman's kernel \(K(x, y) \) and the convergence of its expansion in terms of a complete orthonormal set of functions follows at once. We prove the boundedness of \(K(x, y) \) on compact subsets of \(\Omega \). A sharp value for \(K(E) \) is found to be \(\sup_{B} K(x, x) \).

2. We consider partial differential equations of the type

\[\nabla u = \frac{\partial}{\partial x_k} (a_{ik} \partial u/\partial x_i) = 0, \quad i, k = 1, \cdots, n, \]

where the coefficients \(a_{ik} \in C^{(1,1)} \) in a regular region \(\Omega \subset \mathbb{R}^n \). Moreover, \(\nabla \) satisfies a uniform ellipticity condition

\[\lambda^{-1} \sum_{i=1}^{n} \xi_i^2 \leq a_{ik} \xi_k \xi_i \leq \lambda \sum_{i=1}^{n} \xi_i^2. \]

We recall the definition of regularity: let \(\Omega \) be a subregion of a region \(V \subset \mathbb{R}^n \). Let \(B \) be the open unit ball centered at the origin and let \(P \) be the hyperplane \(x_n = 0 \). \(\Omega \) shall be called a regular subregion [1] if:

(I) \(\text{Bd } \Omega \) is compact in \(V \),

(II) every \(x \in \text{Bd } \Omega \) has a neighborhood \(N(x) \) and a diffeomorphism \(h: N(x) \rightarrow B \) such that \(h(N(x) \cap \text{Bd } \Omega) = B \cap P \) and \(h(N(x) \cap \Omega) \) is one
of the two half balls of $B - P$,
(III) $\bar{\Omega}$ is compact in V,
(IV) Ω and $V - \bar{\Omega}$ have the same boundary in V,
(V) each component of $V - \Omega$ is noncompact in V.

We assume moreover that $h \in C^{1,\lambda}$.

We shall use the following lemmas as applied to regular solutions in Ω of $\mathcal{M}u = 0$.

Lemma I (Poincaré) [2]. If w, w_1, \ldots, w_n are square integrable in a ball B_R of radius R, and if \bar{w} is the average of w over B_R, then

$$\int_{B_R} (w - \bar{w})^2 \, dX \leq C(B_R) \sum_{i=1}^n (w_i)^2 \, dX,$$

where $C(B_R)$ denotes a constant which depends only on B_R.

Lemma II (J. Moser) [3]. If u is a solution of $\mathcal{M}u = 0$ which is defined in $|x| < 2R$ then, for $|x| \leq R$

$$u^2(x) \leq CR^{-n} \int_{|x|<2R} u^2 \, dX,$$

where C denotes a constant.

We now give a bound for the first derivatives of a regular solution of $\mathcal{M}u = 0$ in terms of

$$M_a(u) = \int_a a_{ik} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_k} \, dX.$$

Theorem I. Let E be a compact subset of Ω. Then for $x \in E$, u a regular solution of $\mathcal{M}u = 0$, one has

$$|\frac{\partial u}{\partial x_k}|_E \leq C(E)M_a^{1/2}(u),$$

where $C(E)$ denotes a constant depending only on E.

Proof. Let $\delta > 0$ be defined such that the distance from E to $\text{Bd} \, \Omega$ is greater than 4δ. If we denote by $B(x; R)$ the ball of center x and radius R,

$$B(x, 4\delta) \subset \Omega \quad \forall x \in E.$$

Let x_0 be a point of E, and let $G(x; y)$ be Green's function for $B(x_0, 2\delta)$. Then:

$$u(x) = \int_{\text{Bd} \, B(x_0, 2\delta)} u(y) \frac{\partial}{\partial n_y} G(y; x) \, d\sigma,$$
where $\partial/\partial v^*$ denotes the conormal derivative. Hence (cf. [4])

$$\frac{\partial u}{\partial x_k} = \int_{B(d, 2\delta)} u(y) \frac{\partial}{\partial x_k} \frac{\partial}{\partial v^*} G(y; x) dy,$$

$x \in B(x_0, 2\delta)$. Let

$$\tilde{u}(x_0; 2\delta) = \int_{B(x_0, 2\delta)} u(x) dx / \int_{B(x_0, 2\delta)} dx,$$

then

$$\frac{\partial u}{\partial x_k} = \int_{B(d, 2\delta)} (u(y) - \tilde{u}(x_0; 2\delta)) \frac{\partial}{\partial x_k} \frac{\partial}{\partial v^*} G(y; x) dy,$$

$x \in B(x_0, 2\delta)$.

$$|\frac{\partial u}{\partial x_k}| \leq C \max_{B(d, 2\delta)} |u(y) - \tilde{u}(x_0; 2\delta)| \int_{B(d, 2\delta)} \frac{dy}{|x - y|^{n-1}},$$

$x \in B(x_0, 2\delta)$.

Let ω_n be the area of the $n-1$ sphere:

$$|\frac{\partial u}{\partial x_k}| \leq C \omega_n^{-1} \max_{B(d, 2\delta)} |u(x) - \tilde{u}(x_0; 2\delta)|, \quad x \in B(x_0, \delta),$$

by the maximum principle. By Lemma II

$$|\frac{\partial x}{\partial x_k}|^2 \leq C \int_{B(d, 2\delta)} (u(x) - \tilde{u}(x_0, 2\delta))^2 dx \quad x \in B(x_0, \delta),$$

and by Lemma I

$$|\frac{\partial u}{\partial x_k}|^2 \leq C \int_{B(d, 2\delta)} \sum_{i=1}^{n} (\frac{\partial u}{\partial x_i})^2 dx$$

$$\leq C \lambda \int_{B(d, 2\delta)} \sum_{i=1}^{n} (\frac{\partial u}{\partial x_i})^2 dx$$

$$\leq C \sum_{i=1}^{n} (\frac{\partial u}{\partial x_i})^2 dx$$

and C depends only on ω_n and δ. Cover now E by a finite number, say N, of balls $B(x_j; \delta), j = 1, \ldots, n$.

Then

$$|\frac{\partial u}{\partial x_k}|^2 \leq C M_0(u), \quad x \in E,$$

where $C = \max_j C$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
3. Let \(\Omega \) be regular, and let \(x_0 \) be fixed in \(\Omega \). Consider a compact set \(E \subset \Omega \). Let \(4\delta \) be a positive number smaller than the distance from \(E \cup \{ x_0 \} \) to \(\partial \Omega \). Cover \(E \cup \{ x_0 \} \) by a finite number of open balls of radius \(\delta \), \(B(x_0, \delta), \ldots, B(x_N, \delta) \). A point in each \(B(x_i; \delta) \) can be joined to \(x_0 \) by an arc \(\gamma_i \) in \(\Omega \). Let \(4\delta' \) be a positive number smaller than the distance from \(\bigcup \{ B(x_i; \delta) \} \cup \gamma_i \) to \(\partial \Omega \) and cover each \(\gamma_i \) by a finite number of open balls of radius \(\delta' \), say \(B(y_i, \delta') \).

Corollary. Let \(u \) be a regular solution of \(\Re \mu = 0 \) vanishing at \(x = x_0 \), then for \(x \in E \)

\[
|u(x)|^2 \leq K(E)M_a(u)
\]

where \(K(E) \) depends only on \(E \) (and on \(x_0 \)).

Proof. It follows from the theorem that if \(B(\tilde{x}, 4\delta'') \subset \Omega \) where \(\text{dist}(\tilde{x}, \partial \Omega) > 4\delta'' \) then for \(x \) such that \(|x - \tilde{x}| < \delta \)

\[
|\grad u|^2 \leq C(\tilde{x}, \delta'')M_B(\tilde{x}, 4\delta')(u).
\]

Let \(x', x'' \) be points in \(B(\tilde{x}, \delta'') \) then

\[
|u(x') - u(x'')| \leq \int_{x'}^{x''} |\grad u| \, ds \leq 2\delta''C^{1/2}(\tilde{x}, \delta'')M_{B(\tilde{x}, 4\delta')}(u).
\]

Applying the last inequality to the covering defined by \(B(x_i, 4\delta) \) and \(B(y_j, 4\delta') \) one gets

\[
|u(x) - u(x_0)|^2 = |u(x)|^2 \leq K(E)M_a(u),
\]

which proves the corollary.

From the corollary and from the general theory [5] we get immediately the existence of a complete orthonormal system \(\{ \phi_r(x) \} \) and an expansion for Bergman's kernel

\[
K(x, y) = \sum_{r=1}^{\infty} \phi_r(x)\phi_r(y),
\]

which for fixed \(x \) converges uniformly on compact subsets of \(\Omega \). The \(\phi_r(x) \) may be chosen so that \(\phi_r(x_0) = 0 \) \(\forall r \).

As an application we shall prove the following theorem.

4. Theorem II. The function \(K(x, x) \) is bounded on every compact subset \(E \) of \(\Omega \).

Proof. Cf. [6]. From Theorem I we get, for fixed \(k \):

\[
|\partial u/\partial x_k|_E \leq C(E)M_{1/2}^a(u).
\]
If \(u \) is a solution of \(\Delta u = 0 \), regular and such that \(\partial u / \partial x_k = 1 \) at \(x_0 \in E \), then \(M_0(u) \leq 1/C^2(E) \).

Consider the function

\[
\phi^*(x) = \lambda^{-1/2} \sum_{k=1}^{N} \frac{\partial \phi^*/\partial x_k(x_0) \phi^*(x)}{\sum_{k=1}^{N} [\partial \phi^*/\partial x_k]^2},
\]

\(\Delta \phi^* = 0 \) and \(\partial \phi^*/\partial x_k(x_0) = 1 \).

Therefore

\[
M_0(\phi^*) \leq \lambda \int_0^1 |\text{grad } \phi^*|^2 dX = 1 / \sum_{k=1}^{N} [\partial \phi^*/\partial x_k]^2.
\]

Therefore

\[
\sum_{k=1}^{N} [\partial \phi^*/\partial x_k(x_0)]^2 \leq C^2(E),
\]

and

\[
\sum_{k=1}^{N} [\partial \phi^*/\partial x_k(x_0)]^2 \leq C^2(E),
\]

and this is true for all \(x_0 \in E \). An analogous proof works for all \(k \), \(k = 1, \ldots, n \).

Now, we have

\[
\sum_{k=1}^{N} [\phi_k(x)]^2 = \sum_{k=1}^{N} [\phi_k(x) - \phi_k(x_0)]^2
\]

and

\[
[\phi_k(x) - \phi_k(x_0)]^2 \leq \left[\int_{\gamma(x_0, x)} |\text{grad } \phi_k|^2 ds \right]^2
\]

\[
\leq 4L^2 \int_{\gamma(x_0, x)} |\text{grad } \phi_k|^2 ds
\]

where \(\gamma(x_0, x) \) is an arc from \(x_0 \) to \(x \), lying in \(\Omega \) and of length \(L \); therefore

\[
\sum_{k=1}^{N} [\phi_k(x)]^2 \leq 4L^2C^2(E),
\]

and
\[\sum_{r=1}^{\infty} [\phi_r(x)]^2 = K(x, x) \leq 4L^2C^2(E). \]

We are now ready to give the best estimate for \(K(E) \) in the corollary. Let \(p_0 \) and \(p_1 \) be the principal functions for \(\Re u = 0 \) and \(\Omega \), defined as in [1]. From Theorem 6 in [1],

\[|u(x)|^2 \leq M_0(p_0 - p_1)M_0(u) \]

with equality only for \(u = a(p_0 - p_1), a \in \mathbb{R} \). Moreover, Theorem 5 in [1] shows that

\[M_0(u) - 2u(x) = M_0(p_0 - p_1) + M(u - p_0 + p_1), \]

or

\[u(x) = M_0(u, p_0 - p_1). \]

It follows that \(p_0 - p_1 \), which vanishes at \(x = x_0 \) is the Bergman kernel for the space of regular solutions of \(\Re u = 0 \) in \(\Omega \) vanishing at \(x_0 \),

\[|u(x)|^2 \leq K(x, x)M_0(u), \]

and \(\sup K(x, x) \) is the best possible value for \(K(E) \).

Another application of the previous results would be the obtention of the extremal properties of principal functions [1] for open regions \(V \) of \(\mathbb{R}^n \), such that there exists a nested sequence of regular \(\{\Omega_n\} \), with the properties \(\Omega_{n+1} \supseteq \Omega_n \) and \(\bigcup \Omega_n = V \).

Bibliography

