TWO ELEMENTARY THEOREMS ON THE INTERPOLATION OF LINEAR OPERATORS

RICHARD O’NEIL

Both theorems have to do with functions satisfying Hölder conditions.

Definition. Let T be an operator which takes functions whose domain is n-space into functions whose domain is a metric space. T will be said to be of Hölder type (α, β) norm N if for $g = Tf$,

\[|f(x) - f(x - h)| \leq A |h|^\alpha \quad \text{for all } x \text{ and } h, \]

implies

\[|g(u) - g(v)| \leq NA |u - v|^\beta \quad \text{for all } u \text{ and } v. \]

(Throughout this paper, when dealing with a metric space we shall denote the distance between u and v by $|u - v|$.)

Theorem 1. Suppose that $0 \leq \alpha_0 \leq \alpha_1 \leq 1$, $\beta_0 \geq 0$, $\beta_1 \geq 0$ and that T is a linear operator taking functions whose domain is n-space into functions whose domain is a metric space. If T is simultaneously of Hölder type (α_0, β_0) norm N_0 and of Hölder type (α_1, β_1) norm N_1 and if $0 \leq t \leq 1$, then T is of Hölder type (α, β) norm N where

\[\alpha = \alpha_t = \alpha_0(1 - t) + \alpha_1t, \]
\[\beta = \beta_t = \beta_0(1 - t) + \beta_1t, \]
\[N \leq R_n N_0^{1-t} N_1^t, \]

and where R_n depends only on the dimension of n-space.

Proof. Without loss of generality we may assume

\[|f(x) - f(x - h)| \leq |h|^\alpha. \]

We first prove the theorem in case the domain of f is the real line, that is when $n = 1$.

For $r > 0$, let

\[K_r(s) = \begin{cases} \frac{1}{r} - \frac{|s|}{r^2} & \text{if } |s| < r, \\ 0 & \text{if } |s| \geq r. \end{cases} \]

Then

Presented to the Society, January 23, 1964 under the title Interpolation of operators for Lip spaces; received by the editors October 16, 1963.

1 This research was supported by the Air Force Office of Scientific Research.
\[\int K_r(s) \, ds = \int_{|s| < r} K_r(s) \, ds = 1, \]
\[\int K'_r(s) \, ds = 0, \]
and,
\[\int \left| K'_r(s) \right| \, ds = \frac{2}{r}. \]

Let
\[f_r(x) = \int f(x - s)K_r(s) \, ds = \int f(s)K_r(x - s) \, ds. \]

Let \(e_r(x) = f(x) - f_r(x), \ g = Tf, \ g_r = Tf_r, \) and \(\eta_r = Te_r. \) Then \(g = g_r + \eta_r \)
by linearity of \(T. \)

\[f'_r(x) = \int f(s)K'_r(x - s) \, ds = \int f(x - s)K'_r(s) \, ds = \int (f(x - s) - f(x))K'_r(s) \, ds. \]

\[|f'_r(x)| \leq \int_{|s| < r} |f(x - s) - f(x)| |K'_r(s)| \, ds \leq r^\alpha (2/r) = 2r^{\alpha - 1}. \]

Case 1. \(|h| < r. \)

\[|f_r(x) - f_r(x - h)| = \leq |h| \sup_{y} |f'_r(y)| \leq 2|h| r^{\alpha - 1} \]
\[= 2|h|^{\alpha_1} |h|^{1 - \alpha_1 \alpha - 1} \leq 2|h|^{\alpha_1 \alpha - \alpha}. \]

Case 2. \(|h| \geq r. \)

\[|f_r(x) - f_r(x - h)| = \left| \int (f(x - s) - f(x - h - s))K_r(s) \, ds \right| \]
\[\leq |h|^\alpha = |h|^{\alpha_1} |h|^{\alpha - \alpha_1} \leq |h|^{\alpha_1 \alpha - \alpha}. \]

In either case, \(f_r \) satisfies a H"older condition of order \(\alpha_1, \) indeed,
\[|f_r(x) - f_r(x - h)| \leq 2r^{\alpha - \alpha_1} |h|^{\alpha_1}. \]

Thus,
\[|g_r(u) - g_r(v)| \leq N_1 2r^{\alpha - \alpha_1} |u - v|^{\beta_1}. \]
\[\epsilon_r(x) = f(x) - f_r(x) = \int (f(x) - f(x - s))K_r(s) \, ds. \]

\[|\epsilon_r(x)| \leq \int_{|s|<r} |s|^\alpha K_r(s) \, ds \leq r^\alpha. \]

Case 1. \(|h| \geq r.\)

\[|\epsilon_r(x) - \epsilon_r(x - h)| \leq 2r^\alpha \leq 2r^{\alpha - \alpha_0} |h|^\alpha_0. \]

Case 2. \(|h| < r.\)

\[|\epsilon_r(x) - \epsilon_r(x - h)| \leq |f(x) - f(x - h)| + |f_r(x) - f_r(x - h)| \leq |h|^\alpha + |h|^\alpha \leq 2|h|^\alpha_0 r^{\alpha - \alpha_0}. \]

Thus \(\epsilon_r\) satisfies a Hölder condition of order \(\alpha_0.\) Therefore,

\[|\eta_r(u) - \eta_r(v)| \leq N_0 2r^{\alpha - \alpha_0} |u - v|^\beta_0. \]

Thus, if we set \(r = (N_1 |u - v|^{\beta_1 - \beta_0}/N_0)^{1/(\alpha_1 - \alpha_0)},\)

\[|g(u) - g(v)| \leq |g_r(u) - g_r(v)| + |\eta_r(u) - \eta_r(v)| \leq 2N_1^{\alpha - \alpha_0} |u - v|^\beta_1 + 2N_0^{\alpha - \alpha_0} |u - v|^\beta_0 = 4N_0^{1-1}N_1^{1} |u - v|^\beta. \]

This proves the theorem when the domain of \(f\) is one dimensional. For \(n > 1,\) the case \(n = 2\) is already sufficiently general to illustrate the proof. In this case we let

\[K_r(s) = \begin{cases} 3/\pi r^2 - 3 |s|/\pi r^3 & \text{if } |s| < r, \\ 0 & \text{if } |s| \geq r. \end{cases} \]

For a given \(h = (h_1, h_2) \neq 0,\) let \(\partial/\partial \theta\) denote directional differentiation in the direction \(\theta = h/|h|\). Then \([\partial/\partial \theta]K_r(s) ds\) vanishes and \([\partial/\partial \theta]K_r(s) ds = O(1/r).\) Thus,

\[|(\partial/\partial \theta) f_r(x)| \leq \int_{|s|<r} |f(x - s) - f(x)| |(\partial/\partial \theta) K_r(s)| \, ds \leq r^\alpha O(1/r) = O(r^{\alpha - 1}). \]

Therefore, if \(0 < |h| < r, \theta = h/|h|,\)

\[|f_r(x) - f_r(x - h)| \leq |h| \sup_y |(\partial/\partial \theta) f_r(y)| = |h| O(r^{\alpha - 1}) = O(|h|^{\alpha_0 r^{\alpha - \alpha_1}}). \]

The rest of the proof goes through as before.
Definition. An operator T is said to take L^p into $\text{Lip } \alpha$ with norm N if for $g = Tf$,

$$\left| g(u) - g(v) \right| \leq N \|f\|_p \ |u - v|^\alpha \text{ for all } u \text{ and } v.$$

If f is a measurable function and $\gamma > 0$, let

$$m(f, \gamma) = m(\|f\|, \gamma) = \text{measure of } \{x: |f(x)| > \gamma\}.$$

It is easily shown that

$$\int |f(x)| \, dx = \int_0^\infty m(f, \gamma) \, d\gamma.$$

Furthermore, for $p > 0$,

$$m(\|f\|_p, \gamma) = \text{meas}\{x: |f(x)|^p > \gamma\}$$

$$= \text{meas}\{x: |f(x)| > \gamma^{1/p}\} = m(f, \gamma^{1/p}).$$

Thus,

$$\|f\|_p^p = \int |f(x)|^p \, dx = \int_0^\infty m(\|f\|_p, \gamma) \, d\gamma$$

$$= \int_0^\infty m(f, \gamma^{1/p}) \, d\gamma = p \int_0^\infty m(f, \gamma)^{p-1} \, d\gamma.$$

Given $k \geq 0$, let

$$f_k(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq k, \\ k \text{ sgn } f(x) & \text{if } |f(x)| > k, \end{cases}$$

and let

$$f(x) = f(x) - f_k(x).$$

Theorem 2. Suppose that $0 < p_0 \leq p_1 \leq \infty$, $\alpha_0 \geq 0$, $\alpha_1 \geq 0$, and that T is a linear operator taking measurable functions on a measure space into functions whose domain is a metric space. If T simultaneously takes L^{p_0} into $\text{Lip } \alpha_0$ with norm N_0 and L^{p_1} into $\text{Lip } \alpha_1$ with norm N_1 and if $0 \leq t \leq 1$, then T takes L^p into $\text{Lip } \alpha$ with norm N where

$$1/p = 1/p_t = (1 - t)/p_0 + t/p_1,$$

$$\alpha = \alpha_t = (1 - t)\alpha_0 + t\alpha_1,$$

$$N \leq N_0^{1-t} N_1^t / (1 - t)^{1-t} t^t \leq 2N_0^{1-t} N_1^t.$$

(It is to be remarked that $1/(1-t)^{1-t} t^t$ tends to 1 as t tends to 0 or 1.)
Proof. Suppose, without loss of generality, that $\|f\|_p = 1$. Fix $k \geq 0$, then $f = f^* + f_k$. Let $g = Tf$, $g_0 = Tf^k$ and $g_1 = Tf_k$, then $g = g_0 + g_1$ by linearity of T.

\[
(\|f^k\|_{p_0})^{p_0} = p_0 \int_0^\infty y^{p_0 - 1}m(f^k, y) \, dy = p_0 \int_0^\infty y^{p_0 - 1}m(f, y + k) \, dy
\]
\[
= p_0 \int_k^\infty (z - k)^{p_0 - 1}m(f, z) \, dz \leq p_0 \int_k^\infty z^{p_0 - 1}m(f, z) \, dz
\]
\[
\leq p_0 k^{p_0 - p} \int_k^\infty z^{p_0 - 1}m(f, z) \, dz \leq (p_0 k^{p_0 - p}/p)(\|f\|_p)^p
\]
\[
= p_0 k^{p_0 - p}/p.
\]

Thus $\|f^k\|_p \leq (p_0/p)^{1/p_0} k^{1-p/p_0}$; since T takes L^{p_0} into $\text{Lip} \alpha_0$ with norm N_0,

\[
|g_0(u) - g_0(v)| \leq N_0(p_0/p)^{1/p_0} k^{1-p/p_0} |u - v|^\alpha_0.
\]

\[
(\|f^k\|_{p_1})^{p_1} = p_1 \int_0^\infty y^{p_1 - 1}m(f^k, y) \, dy = p_1 \int_0^k y^{p_1 - 1}m(f, y) \, dy
\]
\[
\leq p_1 k^{p_1 - p} \int_0^k y^{p_1 - 1}m(f, y) \, dy \leq p_1 k^{p_1 - p}/p.
\]

Thus $\|f^k\|_{p_1} \leq (p_1/p)^{1/p_1} k^{1-p/p_1}$, and this last equation is valid even if $p_1 = \infty$.

\[
|g_1(u) - g_1(v)| \leq N_1(p_1/p)^{1/p_1} k^{1-p/p_1} |u - v|^\alpha_1.
\]

If we set $A = 1/p_0 - 1/p_1$, then $1/p - 1/p_1 = A(1 - t)$ and $1/p_0 - 1/p = At$.

Thus, if we let

\[
k^{pA} = (t(1 - t)(p_0/p)^{1/p_0}(p_1/p)^{-1/p_1}(N_0/N_1) |u - v|^\alpha_0 - \alpha_1
\]

\[
|g(u) - g(v)| \leq |g_0(u) - g_0(v)| + |g_1(u) - g_1(v)|
\]
\[
= N_0(p_1/p)^{1/p_0} k^{pA} |u - v|^\alpha_0
\]
\[
+ N_1(p_1/p)^{1/p_1} k^{pA}(1-t) |u - v|^\alpha_1
\]
\[
= N_0^{1-t} N_1 (1/t(1-t)^{-1}) (p_0/p)^{1-t/p_0} (p_1/p)^{t/p_1} |u - v|^\alpha.
\]

Let

\[
B = (p_0/p)^{(1-t)/p_0} (p_1/p)^{t/p_1},
\]

then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[
\log B = \left(\frac{1}{p}\right) \log\left(\frac{1}{p}\right) - (1 - t)\left(\frac{1}{p_0}\right) \log\left(\frac{1}{p_0}\right) - t\left(\frac{1}{p_1}\right) \log\left(\frac{1}{p_1}\right).
\]

But \(x \log x\) is a convex function of \(x \geq 0\), so that
\[
(1/p) \log(1/p) \leq (1 - t)(1/p_0) \log(1/p_0) + t(1/p_1) \log(1/p_1).
\]

Thus \(\log B \leq 0\), \(B \leq 1\) and the theorem is established.

Remark. It is possible to strengthen the result of Theorem 2. We shall say that a measurable function \(f\) belongs to weak \(L^p\) if there exists a number \(A\) such that for all \(y > 0\),
\[
m(f, y) \leq (A/y)^p.
\]

If \(f \in L^p\) then \(f\) belongs to weak \(L^p\), since
\[
(||f||_p)^p = p \int_0^\infty m(f, u)u^{p-1} du \geq p \int_0^u m(f, u)u^{p-1} du
\]
\[
\geq pm(f, y) \int_0^u u^{p-1} du = m(f, y)y^p.
\]

Thus,
\[
m(f, y) \leq (||f||_p/y)^p.
\]

We shall say that a function \(f \in \text{Lip } \alpha\) if for all \(u\) and \(v\),
\[
|f(u) - f(v)| \leq A |u - v|^\alpha.
\]

We shall say \(f \in \text{Lip } \alpha\) if
\[
|f(u) - f(v)| = o(|u - v|^\alpha)
\]
as \(|u - v|\) tends to zero or infinity.

1°. Under the hypotheses of Theorem 2, \(T\) takes weak \(L^p\) into \(\text{Lip } \alpha\) if \(p_0 < p < p_1\).

2°. Under the hypotheses of Theorem 2, \(T\) takes \(L^p\) into \(\text{Lip } \alpha\) if \(p_0 < p < p_1\).

To prove 1°, we suppose that \(m(f, y) \leq 1/y^p\). Then
\[
(||f||_p)^p \leq p_0 \int_k^\infty z^{p_0-1} m(f, z) dz \leq (p_0/p - p_0)k^{p_0 - p},
\]
\[
||f_k||_{p_0} \leq (p_0/p - p_0)^{1/p_0}k^{1-p/p_0}.
\]

Similarly,
\[
||f_k||_{p_1} \leq (p_1/p_1 - p)^{1/p_1}k^{1-p/p_1}.
\]

Thus, if we let
\[k^{pA} = \left(\frac{N_0}{N_1} \right) |u - v|^{\alpha_0 - \alpha_1}, \]

\[|g(u) - g(v)| \leq N_0^{1-t} N_1^{1-t} |u - v|^{\alpha} \left\{ (p_0/p - p_0)^{1/p_0} + (p_1/p_1 - p)^{1/p_1} \right\}. \]

To prove 2°, we observe that

\[\langle \|f\|_p \rangle^p = \int_0^\infty m(f, v^{1/p}) \, dv. \]

Since \(m(f, v^{1/p}) \) is a monotone function of \(v \), the finiteness of the integral implies

\[m(f, v^{1/p}) = o(1/v) \text{ as } v \text{ tends to zero or infinity}. \]

Thus,

\[m(f, y) = o(1/y^p) \text{ as } y \text{ tends to zero or infinity}. \]

Therefore,

\[\|f_k\|_{p_0} = o(k^{1-p/p_0}) \text{ as } k \text{ tends to zero or infinity}, \]

and

\[\|f_k\|_{p_1} = o(k^{1-p/p_1}) \text{ as } k \text{ tends to zero or infinity}. \]

Again we may let

\[k^{pA} = \left(\frac{N_0}{N_1} \right) |u - v|^{\alpha_0 - \alpha_1}. \]

Thus,

\[|g(u) - g(v)| = o(|u - v|^{\alpha}). \]

References

1. R. Fiorenza, Theoremi di interpolazione per transformazioni tra spazi di funzioni con derivate hölderiane, Ricerche Mat. 10 (1961), 282–298.

2. ———, Ulteriori risultati sulla interpolazione tra spazi di funzioni con derivate hölderiane, Ricerche Mat. 11 (1962), 224–253.

Rice University