NOTE ON ANALYTICALLY UNRAMIFIED SEMI-LOCAL RINGS

LOUIS J. RATLIFF, JR.1

All rings in this paper are assumed to be commutative rings with a unit element. If \(B \) is an ideal in a ring \(R \), the integral closure \(B_\alpha \) of \(B \) is the set of elements \(x \) in \(R \) such that \(x \) satisfies an equation of the form \(x^n + b_1 x^{n-1} + \cdots + b_n = 0 \), where \(b_i \in B \) (\(i = 1, \cdots, n \)). An ideal \(B \) in \(R \) is semi-prime in case \(B \) is an intersection of prime ideals. If \(R \) is an integral domain, then \(R \) is normal in case \(R \) is integrally closed in its quotient field. If \(P \) is a semi-local (Noetherian) ring, then \(P \) is analytically unramified in case the completion of \(P \) (with respect to the powers of the Jacobson radical of \(R \)) contains no nonzero nilpotent elements.

Let \(R \) be a semi-local ring with Jacobson radical \(J \), and let \(R^* \) be the completion of \(R \). In [2], Zariski proved that if \(R \) is a normal local integral domain, and if there is a nonzero element \(x \) in \(J \) such that \(pR^* \) is semi-prime, for every prime divisor \(p \) of \(xR \), then \(R \) is analytically unramified. In [1, p. 132] Nagata proved that if \(R \) is a semi-local integral domain, and if there is a nonzero element \(x \) in \(J \) such that, for every prime divisor \(p \) of \(xR \), \(pR^* \) is semi-prime and \(R_p \) is a valuation ring, then \(R \) is analytically unramified. (The condition \(R_p \) is a valuation ring holds if \(R \) is normal.) The main purpose of this note is to extend Nagata's result to the case where \(R \) is a semi-local ring (Theorem 1). This extension will be given after first proving a

1 Work on this paper was supported in part by the National Science Foundation. Grant GP3595.
number of lemmas. Among these preliminary results, Lemma 3 gives a necessary and sufficient condition for \(R_p \) to be a discrete Archimedean valuation ring (where \(R \) is a Noetherian ring and \(p \) is a prime divisor of a nonzero-divisor \(b \in R \)), Corollary 2 of Lemma 5 gives a sufficient condition for a Noetherian ring to be a direct sum of normal Noetherian domains, and Lemma 6 gives a characterization of analytically unramified semi-local rings.

In Lemmas 1–4 below, \(R \) is a Noetherian ring, \(S \) is the integral closure of \(R \) in its total quotient ring, \(b \) is a nonunit in \(R \) which is not a divisor of zero, \(p \) is a prime divisor of \(bR \), and \(q \) is the isolated component of zero determined by \(p \). If \(B \) is an ideal in \(R \), then \(B'R_p \) is the ideal generated by \((B+q)/q \) in \(R_p \). Likewise, if \(c \in R \), then \(c' \) is the \(q \)-residue of \(c \).

Lemma 1. \((bR)_a=bS\cap R\), and an element \(c \) in \(R \) is in \((bR)_a\) if and only if \(c/b \in S \).

Proof. If \(c \in (bR)_a \), then \(c^n+b_1c^{n-1}+\cdots+b_n=0 \), where \(b_i \in b^iR \). Dividing this equation by \(b^n \) shows that \(c/b \in S \), so \(c/b \in bS \cap R \). If \(c/b \in bS \cap R \), then \(c/b \in S \), so \((c/b)^n+r_1(c/b)^{n-1}+\cdots+r_n=0 \), where \(r_i \in R \). Multiplying this equation by \(b^n \) shows that \(c \in (bR)_a \), since \(c \in R \). Therefore \(bS \cap R \subseteq (bR)_a \), hence \((bR)_a = bS \cap R \), q.e.d.

Lemma 2. \(R_p \) is a discrete Archimedean valuation ring if and only if \(R_p \) is normal.

Proof. If \(R_p \) is a valuation ring, then \(R_p \) is normal. Conversely, if \(R_p \) is normal, then \(R_p \) is a normal local integral domain (hence, the kernel of the natural homomorphism from \(R \) into \(R_p \), which is \(q \), is a prime ideal), and \(p'R_p \) is a prime divisor of \(b'R_p \). Since \(b'R_p \neq (0) \), height \(p'R_p = 1 \) hence \(R_p \) is a discrete Archimedean valuation ring \([3, \text{pp. } 276–278]\), q.e.d.

An element \(c \in R \) such that \(bR: cR = p \) is used in the next lemma. Such an element can be found as follows. Let \(p = p_1, p_2, \cdots, p_n \) be the prime divisors of \(bR \), and let \(d \) be an element in the \(p_i \)-primary component of \(bR \) (\(i = 2, \cdots, n \)) which is not in \(bR \). If \(bR: dR \neq p \), let \(e \) be an element in \((bR: dR): pR \) which is not in \(bR: dR \), and let \(c = de \).

Lemma 3. Let \(c \) be an element in \(R \) such that \(bR: cR = p \). \(R_p \) is normal if and only if \(c/b \in S \).

Proof. Let \(R_p \) be normal. Since \(bR: cR = p \), \(b'R_p: c'R_p = p'R_p \). Therefore \(c' \in b'R_p \), so \(c'/b' \in R_p \). Hence, since \(S_{R_p} \) is contained in the integral closure of \(R_p \) in its quotient field, \(c/b \in S \). Conversely,
assume $c/b \in S$. Since $cP \subseteq bR$, $(c/b)p \subseteq R$. If $(c/b)p \subseteq p$, then $bR[(c/b) \subseteq bR[c/b] \subseteq R$, so $R[c/b]$ is contained in the finite R-module $(1/b)R$, hence $c/b \in S$. This is a contradiction, so $cP \nsubseteq bP$. Therefore, there are elements $d \in P$, and $x \in R$, $P \nsubseteq P$ such that $cx = bx$. Then $b'R_a = b'x'P_a = c'd'R_a \subseteq c'P_a \subseteq b'R_a$, so $c'P_a = b'R_a = c'd'R_a$. Now $c'P_a$ is not a divisor of zero in R_a (since $b'x'$ is not), so $P_a = b'(c'/c')R_a$, hence R_a is normal (Lemma 2, and [3, p. 277]), q.e.d.

Lemma 4. $(bR)_a = bR$ if and only if R_a is normal, for every prime divisor P of bR.

Proof. If R_a is normal, for every prime divisor P of bR, then $R_a = S_{R_a, b}$, so $P_a \cap S$ is a prime divisor of bS. Let P_1, \ldots, P_a be the prime divisors of bR, and let b_i be the image of b in R_a. Then $(bR)_a = bS \cap R$ (Lemma 1) $\subseteq \left(\bigcap_{i=1}^n (b_iP_i \cap S) \right) \cap R = \left(\bigcap_{i=1}^n (b_iP_i \cap R) \right) \subseteq (bR)_a$, hence $(bR)_a = bR$. Conversely, let $(bR)_a = bR$, let P be a prime divisor of bR, and let c be an element in R such that $bR = cR$. Then $c/b \in R$. If R_a is not normal, then $c/b \in S$ (Lemma 3), hence $c \in (bS \cap R) = (bR)_a$ (Lemma 1). Since $(bR)_a = bR$, this is a contradiction to $c/b \in S$. Therefore R_a is normal, q.e.d.

Lemma 5. Let R be a Noetherian ring with Jacobson radical J, let b be a nonzero element in J, and let P_1, \ldots, P_n be the prime divisors of bR. If P_{P_i} is a discrete Archimedian valuation ring $(i = 1, \ldots, n)$, then the isolated component of zero contained in P_i is a prime ideal q_i, and $\cap_{i=1}^n q_i = (0)$. Moreover, b is not a zero-divisor in R, and $(bR)_a = bR$.

Proof. If P_{P_i} is a discrete Archimedian valuation ring, then P_{P_i} is an integral domain which is not a field, so the isolated component of zero contained in P_i is a prime ideal q_i. Since q_i is the kernel of the natural homomorphism from R into P_{P_i}, q_i is contained in every P_i-primary ideal. Hence, since $bR = \cap_{i=1}^n (b_iP_{P_i} \cap R)$, where b_i is the q_i-residue of b, and since each P_i is a minimal prime divisor of bR, $Z = \cap_{i=1}^n q_i \subseteq bR$. Since $bP \in q_i$ $(i = 1, \ldots, n)$, $Z : bR = Z$. This implies $Z = bR \cap (Z : bR) = b(Z : bR)$. Therefore, since $b \in J$, $Z = b(Z : bR) = bZ \subseteq JZ \subseteq Z$. Hence, $Z = \cap_{i=1}^n J_iZ \subseteq \cap_{i=1}^n J_i = (0)$. Thus b is not a zero-divisor, so $(bR)_a = bR$ (Lemma 4), q.e.d.

Corollary 1. With the same R and J of Lemma 5, suppose there is a nonzero nilpotent element in R. If b is a nonzero divisor in J, then $(bR)_a \neq bR$.

Proof. If b is a nonzero-divisor in J such that $(bR)_a = bR$, then R_a is a discrete Archimedian valuation ring, for every prime divisor P of bR (Lemma 4). Hence by Lemma 5, the zero ideal in R is semiprime, q.e.d.
Corollary 4 below is the next result which is needed to prove Theorem 1, and it can be proved as a corollary to Lemma 5. Corollaries 1, 2, and 3, and Lemma 6 are not used in the proof of Theorem 1. They are included at this point because they are of some interest in themselves.

Corollary 2. Let R be an integrally closed Noetherian ring, let J be the Jacobson radical of R, and let q_1, \ldots, q_n be the minimal prime divisors of zero. If there is a nonzero-divisor b in J, then $R = \bigoplus_i R/q_i$, and R/q_i is a normal Noetherian domain.

Proof. If b is a nonzero-divisor in J, then $(bR)_a = bR$, since R is semi-prime, and consequently the total quotient ring Q of R is the direct sum of n fields. Since the idempotents in Q are integrally dependent on R, they are in R. This, and the fact that R is integrally closed, immediately imply the conclusions, q.e.d.

In Corollaries 3 and 4 and Lemmas 6 and 7, R is a semi-local ring with maximal ideals M_1, \ldots, M_d, $T = \bigcap_i M_i$, and R^* is the completion of R.

Corollary 3. Assume that no M_i is a prime divisor of zero, and that R^* is integrally closed. Then the completion of each R_{M_i} is normal (hence R_{M_i} is a normal local domain).

Proof. Since no M_i is a prime divisor of zero, there is a nonzero-divisor b in the Jacobson radical of R^* [4, p. 267]. Hence by Corollary 2, $R^* = \bigoplus R^*/q_i$, where q_i runs through the prime divisors of zero in R^*. Since the idempotents of the total quotient ring of R^* are in R^*, no maximal ideal in R^* contains more than one primed divisor of zero. Therefore, there are d prime divisors of zero in R^*, since R^*/q_i is a complete normal local domain. Let $M_i R^*$ be the maximal ideal in R^* which contains q_i. Then it is immediately seen that $R_{M_i R^*} = R^*/q_i \bigcap R/(q_i \cap R) = R_{M_i}$. Since R_{M_i} is a dense subspace of R^*/q_i [4, p. 283], the completion of R_{M_i} is normal. It is well known [1, p. 59] that this implies that R_{M_i} is a normal local domain, q.e.d.

Lemma 6. Let b be a nonzero-divisor in J, let R^* be the integral closure of R^* in its total quotient ring, and let $T = R^*/c \cap R^*[1/b]$. If there is an integer n such that $b^n T \subseteq b R^*$, then R is analytically unramified. Conversely, if R is analytically unramified, then for every nonzero-divisor c in R there is an integer k (depending on c) such that $c^k (R^*/c \cap R^*[1/c]) \subseteq c R^*$.

Proof. Since b is not a divisor of zero in R, b is not a divisor of zero in R^* [4, p. 267], so $R^*[1/b]$ is contained in the total quotient
ring Q of R^*. Let x be a nilpotent element in R^*. Then $x/b^i \in T$, for all $i \geq 1$. Therefore, if $b^iT \subseteq bR^*$, then $x \in b^iT \subseteq b^{i+n}R^* \subseteq J^{i+n+1}R^*$, for all $i \geq n$. Since $\cap J^* = 0$, $x = 0$. Hence R is analytically unramified. Conversely, let R be analytically unramified and let q_1, \ldots, q_n be the prime divisors of zero in R^*. Then $R^* = \bigoplus_i (R^*/q_i)'$, where $(R^*/q_i)'$ is the integral closure of R^*/q_i. Since $(R^*/q_i)'$ is a finite R^*/q_i-module [1, p. 112], R^* is a finite R^*-module. Thus $R^* \cap R^*[1/c]$ is a finite R^*-module, for every non-zero-divisor c in R. Hence, since every element in $R^* \cap R^*[1/c]$ can be written in the form r/c^i, where $r \in (cR^*)_a$, the last statement is clear, q.e.d.

Corollary 4. With the same notation as Lemma 6, assume $(bR^*)_a = bR^*$. Then R is analytically unramified.

Proof. If $t \in T$, then $t = r/b^i$, where $r \in (bR^*)_a$. Since bR^* and bR^* have the same prime divisors, $(bR^*)_a = bR^*$ (Lemma 4). Therefore $T = R^*$, hence $bT = bR^*$, and so R is analytically unramified by Lemma 6, q.e.d.

Lemma 7. Let p be a height one prime ideal in R. If R_p is normal, and if $pR^* = \bigcap_i p_i^*$, where each p_i^* is a prime ideal in R^*, then each R_p^* is normal, and $p^{(n)}R^* = \bigcap_i p_i^{(n)}$ (where $q^{(n)}$ is the nth symbolic power of a prime ideal q).

Proof. Since R_p is a normal local domain which is not a field, p is not a prime divisor of zero. Let b be an element in p such that $b'R_p = p'R_p$ ($B'R_p$ denotes the ideal in R_p generated by an ideal B in R). Then $0:bR \subseteq q$, where q is the prime divisor of zero contained in p. Therefore, $(0:bR)R^* = 0R^* + bR^*$ [4, p. 267] $\subseteq qR^* \subseteq pR^* \subseteq p_i^*$ $(i = 1, \ldots, h)$. Fix i, set $p_i^* = p_i^*$, and let q_i^* be a prime divisor of $0R^*$ which is contained in p_i^*. Then $q_i^* \cap R$ is a prime divisor of zero [4, p. 267] and is contained in $p = p^* \cap R$. Hence $q_i^* \cap R = q$. Further, since q is the only q-primary ideal, every q^*-primary ideal contracts in R to q. Hence R_p is a subring of R_p^*, and, since $0R^* : bR^* \subseteq qR^*$, b is not a zero-divisor in R_p^*. Since pR^* is semi-prime, $b'R_p^* = p'R_p^* = p^*R_p^*$. Therefore R_p^* is normal (Lemma 2 and [3, pp. 276–278]). The proof that $p^{(n)}R^* = \bigcap_i p_i^{(n)}$ is the same as that in [2]. Namely, since the result is true for $n = 1$, let $n > 1$ and assume $p^{(n-1)}R^* = \bigcap_i p_i^{*(n-1)}$. Let c be an element in $bR : p$ which is not in p (since $b'R_p = p'R_p$, $bR : p \subseteq p$), and let $d^* \in \bigcap_i p_i^{*(n)} \subseteq pR^*$. Since $c \in bR : pR^*$, $cd^* = br^*$, for some $r^* \in R^*$, hence by the choice of c and b, $b'r^{*'}R_{p_i^*} = c'd^{*'}R_{p_i^*} = d^{*'}R_{p_i^*} \subseteq p_i^{*(n)}R_{p_i^*} = b'nR_{p_i^*} (i = 1, \ldots, h)$. Therefore, $r^* \in \bigcap_i p_i^{*(n-1)}$, so by induction $r^* \in p^{(n-1)}R^*$. Thus $cd^* = br^* \in p^{(n)}R^*$, hence $d^* \in p^{(n)}R^*: cR^* = (p^{(n)}: cR^*)R^*$ [4, p. 267] $= p^{(n)}R^*$, since $c \notin p$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Thus $\bigcap_{i=1}^{n} p_i^{*}(n) \subseteq p^{(n)}R^*$, and since the opposite inclusion is clear, $p^{(n)}R^* = \bigcap_{i=1}^{n} p_i^{*}(n)$, q.e.d.

Theorem 1. Let R be a semi-local ring with Jacobson radical J, and let R^* be the completion of R. Assume there is a nonzero-divisor b in R such that $(bR)_a = bR$ and pR^* is semi-prime, for every prime divisor p of bR. Then $(bR^*)_a = bR^*$. If $b \in J$, then R is analytically unramified.

Proof. If b is a unit in R, then $(bR^*)_a = bR^* = R^*$. Hence assume b is a nonunit in R, and let p_1, \ldots, p_n be the prime divisors of bR. Since each R_{p_i} is a discrete Archimedean valuation ring (Lemmas 2 and 4), every p_i-primary ideal is a symbolic power of p_i. Therefore $bR = \bigcap_{i=1}^{n} p_i^{(e_i)}$, so $bR^* = \bigcap_{i=1}^{n} (p_i^{(e_i)}R^*)$ [4, p. 269]. Fix i, set $p_i^{(e_i)} = p_i^{(e_i)}$, and let p_i^*, \ldots, p_n^* be the prime divisors of pR^*. Then $p_i^{(e_i)}R^* = \bigcap_{i=1}^{n} p_i^{(e_i)}$ and each $R_{p_i^*}$ is normal (Lemma 7). Thus the prime divisors of bR^* are the prime divisors of the $p_iR^* (i = 1, \ldots, h)$, hence $(bR^*)_a = bR^*$ (Lemma 4). Therefore, if $b \in J$, then by Corollary 4, R is analytically unramified, q.e.d.

Corollary 5. Let R, R^* and b be as in Theorem 1, and let S^* be the integral closure of R^* in its total quotient ring. If there is an element v in S^* such that $bv \in R^*$, then $v \in R^*$.

Proof. $bv \in bS^* \cap R^* = (bR^*)_a = bR^*$, q.e.d.

References

University of California, Riverside