BIBLIOGRAPHY

UNIVERSITY OF MICHIGAN

KIRZBRAUN'S THEOREM AND KOLMOGOROV'S PRINCIPLE

EDWARD SILVERMAN

Let B be a Banach space. A distance function p on B is a non-negative valued function which is continuous, positively homogeneous of degree one and subadditive. If A is a set and if x and y map A into B then we write xpy if $p(x(a) - x(b)) \leq p(y(a) - y(b))$ for all $a, b \in A$. If A is a k-cell, if B is Euclidean space, if p is the norm and if L is Lebesgue area, then Kolmogorov’s Principle, K.P., asserts that Px^y if xpy [H.M.]. Lebesgue area is a parametric integral of the type considered by McShane [M], for smooth enough maps. In this paper we consider other such integrals, not necessarily symmetric, for which a type of K.P. holds. We conclude with a minor application to a Plateau problem.

The proof of K.P. follows from

Kirzbraun’s Theorem. If $A \subseteq \mathbb{E}^n$ and $t: A \rightarrow \mathbb{E}^n$ is Lipschitzian, then there exists an extension T of t, $T: \mathbb{E}^n \rightarrow \mathbb{E}^n$, and T is Lipschitzian with the same constant as t [S].

The proof of the version of K.P. in which we are interested depends upon an embedding of \mathbb{E}^n in m, the space of bounded sequences [B],

Received by the editors January 11, 1965.

1 This research was supported in part by National Science Foundation Grant No. GP634.
and an extension theorem, resembling that of Kirzbraun, for \(m \).

Let \(\alpha \) be the distance function on \(m \) defined by \(\alpha(a) = \max \{ \sup a^i, 0 \} \). In a manner to be made precise in the Embedding Theorem, \(\alpha \) is universal as a distance function.

Let \(B \) be a separable Banach space and \(p \) be a distance function on \(B \). Let \(\{ b_i \} \) be dense on \(\partial K \) where \(K = \{ b \in B \mid p(b) \leq 1 \} \). There exist, by the Hahn-Banach Theorem \([B]\), \(f_i \in B^* \) such that \(f_i(b) = 1 \) and \(f_i(b) \leq p(b) \) for all \(b \in B \). Since \(p \) is continuous there exists \(N' > 0 \) such that \(\|f_i\| \leq N' \) for all \(i \).

Embedding Theorem \([S3]\). Let \(V_b = \{ f_i(b) \} \). Then \(V \in L(B, m) \) and \(p = \alpha V \).

The proof is almost immediate.

Let \(N \) be the set of natural numbers. If \(k \in N \), then \(\Lambda^k m \) is the space of all bounded real-valued anti-symmetric functions on \(N^k \) with the sup norm.

If \(a = (a_1, \cdots, a_k) \in m^k \) let \(U_a \in L(E^k, m) \) and \(\Lambda a = a_1 \Lambda \cdots \Lambda a_k \in \Lambda^k m \) be defined by \(U_a h = \sum_{i=1}^k h_i a_i \) for all \(h = (h_1, \cdots, h_k) \in E^k \), and

\[
(\Lambda a)(n_1, \cdots, n_k) = \det \begin{bmatrix} a_1 & \cdots & a_1 \\ \vdots & \cdots & \vdots \\ a_k & \cdots & a_k \\ \end{bmatrix}
\]

where, of course, \(a_i = (a_1^i, a_2^i, \cdots) \). Furthermore, if \(\xi = (\xi_1, \cdots, \xi_k) \in m^{*k} \) then

\[
[\Lambda a, \xi_1 \Lambda \cdots \Lambda \xi_k] = \det \begin{bmatrix} \xi_1(a_1) & \cdots & \xi_k(a_1) \\ \vdots & \cdots & \vdots \\ \xi_1(a_k) & \cdots & \xi_k(a_k) \\ \end{bmatrix} .
\]

If \(E^k \subset m \) and \(a_1, \cdots, a_k \in E^k \), then \(\|\Lambda a\| \) is the volume of the parallelepiped spanned by \(a_1, \cdots, a_k \). If similarly, \(b \in (E^k)^k \subset m^k \) then \(\|\Lambda a\| \leq \|\Lambda b\| \) if \(U_a \preceq U_b \), and this fact is vital for the validity of K.P. In general, we write \(a \prec b \) if \(U_a \preceq U_b \).

Let \(M \) be the set of all distance functions on \(\Lambda^k m \) and let \(M' = \{ f \in M \mid f(\Lambda a) \leq f(\Lambda b) \text{ whenever } a \prec b \} \).

Let \(Q \) be a \(k \)-cell. If \(x \in C(Q, m) \) is Lipschitzian, then \(dx = \{ \partial x^i/\partial u^i \} \) exists almost everywhere. We write \(dx \) for \((d_1 x, \cdots, d_k x) \in m^k \) and, as above, \(\Delta dx \) for \(d_1 x \Lambda \cdots \Lambda d_k x \).

Suppose that \(B \) is a Banach space contained in \(m \). Then we can identify \(\Lambda^k B \) with the appropriate subspace of \(\Lambda^k m \). Let \(Q \) be a \(k \)-cell and \(P(Q, B) \) be the subset of \(C(Q, B) \) consisting of quasilinear func-
tions. Then \(P(Q, B) \) is dense in \(C(Q, B) \). If \(z \in P(Q, B) \) and \(f \in M \) then we define \(\varepsilon_f z = \sum f(\Delta z) \cdot \operatorname{vol} \Delta \) where the summation is taken over the oriented simplexes, \(\Delta \), of linearity of \(z \). Let \(M'' = \{ f \in M' \mid \varepsilon_f \) is lower semi-continuous on \(P(Q, B) \} \). If \(f \in M'' \) then the Fréchet extension, \(L_{f,B} \), of \(\varepsilon_f \) is the Lebesgue area: \(L_{f,B} = \lim \inf_{n \to \infty} \varepsilon_f z \) for each \(x \in C(Q, B) \) where \(z \in P(Q, B) \). Let us write \(L_f \) for \(L_{f,m} \). We will make use of the fact, proved like the two-dimensional case in [S3], that \(L_{f,B} = \int f(\Delta z) = L_f x \) for \(x \) in a subset of \(C(Q, B) \) which contains, in particular, all Lipschitzian maps.

It is obvious that \(L_f \leq L_{f,B} \), but not at all evident that the equality holds, though this known for \(k = 2 \) and for a wide class of functions for \(k > 2 \).

Let \(e \) be the identity mapping on \(m \).

Extension Theorem. Let \(\sigma > 0, A \subset m \) and \(t : A \to m \) with \(t \alpha(\sigma \epsilon | A) \), i.e., \(\alpha(ta - tb) \leq \sigma \alpha(a - b) \) for all \(a, b \in A \). Then there exists an extension \(T \) of \(t \) such that \(t \alpha(\sigma \epsilon) \). Let \(\psi_i(a, c) = (ta)_i + \sigma \alpha(c - a) \) for all \(a, c \in A \) and \(c \in m \), and let \(T_i(c) = \inf \{ \psi_i(a, c) \mid a \in A \} \). Then we can let \(T \epsilon = \{ T_i(c) \} \).

The proof is like that of the corresponding theorem in [S3]. First suppose that \(c \in A \). Then \(\psi_i(a, c) - \psi_i(c, c) = (ta)_i + \sigma \alpha(c - a) - (tc)_i \) \(\geq \sigma \alpha(c - a) - \alpha(tc - ta) \geq 0 \) and so \(T | A = t \). If \(b \in m \) then \(\psi_i(a, b) - \psi_i(a, c) = \sigma[\alpha(b - a) - \alpha(c - a)] \leq \sigma \alpha(b - c) \) and so \(\psi_i(a, b) - \psi_i(a, c) \leq \sigma \| b - c \| \). Thus \(\| T_i(b) \| \leq \| tc \| + \sigma \| b - c \| \) and \(T b \in m \) for all \(b \). If \(d \in m \) then \([T_i(b) - T_i(d)] \leq \sup \{ \sigma[\alpha(b - a) - \alpha(d - a)] \leq \sigma \alpha(b - d) \), and the proof is complete.

Let \(\pi_n a = b \) where \(b^i = a^i \) if \(i \leq n \) and \(b^i = 0 \) for \(i > n \).

It is clear that \(x_n \to y \), in \(C(Q, m) \), if and only if

\[
\max \{ \alpha(x_n(p) - y(p)) \mid p \in Q \} \to 0 \quad \text{and} \quad \max \{ \alpha(y(p) - x_n(p)) \mid p \in Q \} \to 0.
\]

Hence \(T x_n \to T y \) whenever \(x_n \to y \) and \(T \alpha \).

Kolmogorov’s Principle. If \(x, y \in C(Q, m) \), if \(x \alpha y \), and if \(f \in M'' \), then \(L_f x \leq L_f y \).

Let \(z \in P(Q, m) \) and \(T \alpha \). Let \(w = T z \) and \(w_n = \pi_n w \). Then \(w \) is Lipschitzian. Hence for almost all \(p \in Q \), all \(h \in R^k \) and \(s > 0 \), \(\alpha(s \Delta w_n(p) \cdot h + o(s)) = \alpha((w_n(p + sh) - w_n(p)) \leq \sigma \alpha(s \Delta z(p) \cdot h) \). It follows that \(d w(p) \prec d \alpha(p \cdot h) \) and, since \(f \in M'' \), \(L_f(T z) = \int f(\Delta w) \leq \int f(\Delta z) = \varepsilon_f z \).

If we let \(T y = x \) then \(t \alpha(\epsilon \mid \text{range} y) \) and, by the Extension Theorem, there exists \(T \alpha \) with \(T y = x \). Let \(z_n \to y \) with \(z_n \in P(Q, m) \) and \(\varepsilon_f z_n \to L_f y \). Then \(T z_n \to x \) and \(L_f x \leq \lim \inf L_f(T z_n) \leq \lim \varepsilon_f z_n = L_f y \).

If seems appropriate to show that there exist \(A \in M'' \) such that \(A \) is not symmetric.
If \(a \in m^k \), then \(R_a \), the range of \(U_a \), is the vector subspace of \(m \) spanned by the components of \(a \) and \(R_a^* \) is the space of linear functionals over \(R_a \). If \(\xi \in R_a^* \), let \(N_a(\xi) = \inf \{ K | K\alpha(c) \geq \xi(c) \text{ for all } c \in R_a \} \). Let \(A(\Delta a) = \sup \{ [\Delta a, \xi_1 \Delta \xi_2 \Lambda \cdots \Lambda \xi_k^k] | N_a(\xi_i) \leq 1 \} \). Suppose that \(a < b \) and \(T \in L(R_b, R_a) \) is defined by \(U_a = T \circ U_b \). Let \(T^* \in L(R_a^*, R_b^* \) be defined by \(T^* \xi = \xi \circ T \). If \(K\alpha \circ U_a \geq \xi \circ U_a \), then \(K\alpha \circ U_b \geq T^* \xi \circ U_b \) and \(N_b(T^* \xi \leq N_a(\xi) \). Thus

\[
A(\Delta a) = \sup \{ [\Delta b, T^* \xi_1 \Lambda \cdots \Lambda T^* \xi_k^k] | N_a(\xi_i) \leq 1 \}
\]

\[
\leq \sup \{ [\Delta b, \eta_1 \Lambda \cdots \Lambda \eta_k] | N_b(\eta_i) \leq 1 \} = A(\Delta b).
\]

For each \(\gamma \in \Delta^k m \) we set

\[
A(\gamma) = \inf \left\{ \sum_{i=1}^p A(\Delta a_i) \left| \sum_{i=1}^p (\Delta a_i)(n) \geq \gamma(n) \text{ for all } n \in N^k \right. \right\}.
\]

Then \(A \in M' \). It can be shown, by making suitable modifications in the argument of [S3], that \(A \in M'' \).

We conclude with an interesting, though trivial, application. If \(f \in M'' \) and \(\phi \in C(\partial Q, m) \) and \(B(\phi) = \inf \{ L_f x | x \in C(Q, m) \text{ and } x \big| \partial Q = \phi \} \). Then \(B(\phi) \leq B(\phi') \text{ if } \phi \leq \phi' \). The proof goes as follows: There exists \(T \alpha \) with \(\phi = T \phi' \). Let \(y \in C(Q, m) \) with \(y \big| \partial Q = \phi' \). Then \(T y \in C(Q, m) \) and \(T y \big| \partial Q = \phi \). Hence \(B(\phi) \leq L_f (T y) \leq L_f y \).

References

