NILPOTENT ELEMENTS IN RINGS OF
INTEGRAL REPRESENTATIONS

IRVING REINER

1. Introduction. Let G be a finite group, and let R be a discrete valuation ring of characteristic zero, with maximal ideal $P = \pi R$, and whose residue class field $\overline{R} = R/P$ has characteristic $p \neq 0$. By an RG-module we mean always a left RG-module which is finitely generated over R, though not necessarily R-torsionfree. Assume that the Krull-Schmidt theorem is valid for RG-modules; this is certainly the case when R is complete, or when R is a valuation ring in an algebraic number field which is a splitting field for G.

In a recent paper [4] we introduced the integral representation ring, denoted by $A(RG)$, defined as the additive group generated by the symbols $\{ M \}$, one for each isomorphism class of R-torsionfree RG-modules, with relations $\{ M \otimes N \} = \{ M \} + \{ N \}$. Multiplication in $A(RG)$ is defined by taking tensor products of modules.

The question arises as to whether the commutative ring $A(RG)$ contains any nonzero nilpotent elements. This is of special interest in view of recent results of Green [2] and O'Reilly [3], who showed that if k is a field of characteristic p, and if G has a cyclic p-Sylow subgroup, then $A(kG)$ has no nonzero nilpotent elements.

In contradistinction to this, we proved in [4]:

Theorem 1. Let G^* be a cyclic group of order n, and suppose that the Krull-Schmidt theorem holds for RG^*-modules. Assume that $n \in P^2$, and if $2 \in P$ assume further that $n \in 2P$. Then $A(RG^*)$ contains at least one nonzero nilpotent element.

The aim of the present note is to establish the following generalization.

Theorem 2. Suppose that the group G contains a cyclic subgroup G^* satisfying the hypotheses of Theorem 1, and assume that the Krull-Schmidt theorem holds for RG-modules. Then $A(RG)$ contains at least one nonzero nilpotent element.

We shall use the following notation. For M an RG-module, set $\overline{M} = M/PM$. Denote by M_H the RH-module obtained from M by
restriction of operators, where H is a subgroup of G. For N an RH-module, let N^G denote the induced RG-module defined by

$$N^G = RG \otimes_{RH} N.$$

The trivial RG-module is R itself, on which each $g \in G$ acts as identity operator. If M, N are RG-modules, the notation $M \mid N$ means that M is isomorphic to an RG-direct summand of N.

As general reference for the techniques and definitions used in this note, we refer the reader to [1].

2. Preliminaries to the proof. Suppose hereafter that the hypotheses of Theorem 2 are satisfied, so that G contains a cyclic subgroup G^* of order n. If p is the unique rational prime contained in P, then the assumptions about n readily imply that $p^e \mid n$, where

$$e = \begin{cases} 2, & p = 2, \\ 1, & p \text{ odd, } p \in P^2, \\ 2, & p \text{ odd, } p \in P^2. \end{cases}$$

Hence G^* contains a cyclic subgroup H of order p^e. Since the Krull-Schmidt theorem is assumed valid for RG^*-modules, it also holds for RH-modules. Note that $p^e \in P^*$, and if $p = 2$, then $p^e \in 2P$.

Let I denote the augmentation ideal of RH, so that

$$I = \sum_{h \in H} R(h - 1).$$

Then

$$\bar{I} = \sum_{h \in H} \overline{R}(h - 1) \cong \overline{R}[x]/(x - 1)^{p^e-1},$$

where the generator of the cyclic group H acts on the right-hand module as multiplication by x. This shows that \bar{I} is indecomposable, whence so is I.

We shall show next that if K is a proper subgroup of H, and \overline{M} is any \overline{RK}-module, then $\bar{I} \mid \overline{M}^H$ is impossible. For if such a relation were true, we could assume without loss of generality that \overline{M} is an indecomposable \overline{RK}-module. Since K is cyclic, the indecomposable \overline{RK}-modules may be listed explicitly, and have K-dimensions $1, 2, \cdots, [K:1]$. If \overline{M} has dimension $[K:1]$, then $\overline{M} = \overline{RK}$, and in that case $\bar{I} \mid \overline{RH}$. This is impossible since \overline{RH} is indecomposable. On the other hand, if $\dim \overline{M} < [K:1]$, then $\dim \overline{M}^H = [H:K] \cdot \dim \overline{M} < p^e - 1 = \dim \bar{I}$, so also in this case \bar{I} cannot be a direct summand of \overline{M}^H.

As in [4], define the RH-modules X and Y by
Then X is a nonsplit extension of the factor module R (with trivial action of H) by the submodule I, and hence X is indecomposable. On the other hand, we showed in [4] that Y is an extension of R by a submodule J, where $\overline{R}|\overline{J}$. From these facts we were able to conclude that

$$X \cong Y \cong \overline{R} \oplus I,$$

and hence X is not isomorphic to Y.

Furthermore, there exist exact sequences

$$0 \to X \to RH \to \overline{R} \to 0$$

(1)

$$0 \to Y \to RH \to I \to 0.$$

Let r be a positive integer such that $p|r$, and let M be any RH-module. Define a new RH-module M_r consisting of the same elements as M, but with a different action of H, namely, an element $h \in H$ acts on M, in the same way that h^r acts on the original module M. Clearly, if M is an extension of A by B, then M_r is an extension of A_r by B_r.

Further, if $R|\overline{M}$ then also $R|\overline{M_r}$.

We claim that $X \cong Y_r$ is impossible. To prove this, note first of all that Y_r is an extension of R by J_r. If $X \cong Y_r$ then $I \cong J_r$, and so $\overline{I} \cong \overline{J_r}$. This cannot hold true because $\overline{R}|\overline{J}$, so that $\overline{R}|\overline{J_r}$, while on the other hand $\overline{R}|\overline{I}$. We have thus established our claim.

3. Proof of the main result. Keeping the notation of the preceding section, we are now ready to prove Theorem 2. Let us define $U = X^g$, $V = Y^g$. Since $(RH)^g \cong RG$, from the exact sequences in (1) we obtain a new pair of exact sequences

$$0 \to U \to RG \to \overline{R}^g \to 0,$$

$$0 \to V \to RG \to I^g \to 0.$$

Since $X \cong \overline{V}$ we conclude that $\overline{U} \cong \overline{V}$.

For any RG-module M of R-rank m, there is an exact sequence

$$0 \to U \otimes_R M \to RG \oplus \cdots \oplus RG \to \overline{R}^g \otimes_{RG} M \to 0,$$

where m summands occur in the center module. This implies by Schanuel's Lemma that the module $U \otimes_R M$ depends only upon \overline{M}. Hence we may conclude that

$$U \otimes_R U \cong U \otimes_R V \cong V \otimes_R U \cong V \otimes_R V,$$

and therefore that $\{U\} - \{V\}$ has square zero in $A(RG)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
In order to complete the proof of Theorem 2, it suffices to show that
\(\{U\} - \{V\} \) is nonzero, that is, that \(U \) and \(V \) are not isomorphic. Suppose that \(U \cong \cong V \), so that \(X^g \cong Y^g \). Then

\[(X^g)_H \cong (Y^g)_H \] as \(RH \)-modules.

However, \(X \mid (X^g)_H \), and so also \(X \mid (Y^g)_H \). Let us apply Mackey's Subgroup Theorem to the module \((Y^g)_H \). This yields

\[(Y^g)_H \cong \sum_g (g \otimes Y)_K^H. \]

In this formula, \(g \) ranges over a full set of representatives of the \((H, H) \)-double cosets of \(G \). For each such \(g \), \(K \) is the subgroup of \(H \) given by \(K = H \cap gHg^{-1} \). The \(RK \)-module \(g \otimes Y \) is a subspace of \(RG \otimes Y \), and the action of \(K \) on \(g \otimes Y \) is given by

\[ghg^{-1}(g \otimes y) = g \otimes hy, \quad h \in H, \quad y \in Y. \]

Since \(X \mid (Y^g)_H \) and \(X \) is indecomposable, we conclude that \(X \mid (g \otimes Y)_K^H \) for some \(g \), and hence that \(X \mid (g \otimes Y)_K^H \). By the remarks in §2, this cannot occur if \(K \) is a proper subgroup of \(H \). On the other hand, suppose that \(K = H \), so that \(gHg^{-1} = H \). If \(h \) is a generator of the cyclic group \(H \), we may write \(g^{-1}hg = hr \), where \(p \mid r \). Then the \(RH \)-modules \(g \otimes Y \) and \(Y_r \) are isomorphic, and if \(X \mid (g \otimes Y) \), then \(X \cong Y_r \). This is impossible by the results of §2. We have thus shown that \(U \) and \(V \) are nonisomorphic, which completes the proof of the theorem.

Corollary. Let \(R_0 \) be a valuation ring in an algebraic number field, with maximal ideal \(P_0 \). Suppose that \(G \) contains a cyclic sub-group \(G^* \) of order \(n \), where \(n \in P_0^2 \), and if \(2 \in P_0 \), assume further that \(n \in 2P_0 \). Then \(A(R_0G) \) contains at least one nonzero nilpotent element.

Proof. Even though the Krull-Schmidt theorem may not hold for \(R_0G \)-modules, we may nevertheless form the representation ring \(A(R_0G) \) defined as above. If \(L \) and \(L' \) are \(R_0G \)-modules, it is easily seen that \(\{L\} = \{L'\} \) in \(A(R_0G) \) if and only if there exists an \(R_0G \)-module \(M \) such that \(L \oplus M \cong L' \oplus M \).

The construction given in Theorem 2, with \(R \) replaced by \(R_0 \), yields a pair of \(R_0G \)-modules \(U_0, V_0 \) such that \(U = R \otimes U_0, V = R \otimes V_0 \). However, the map \(A(R_0G) \rightarrow A(RG) \) defined by \(L \mapsto R \otimes R_0 \otimes L \) is a monomorphism. Therefore \(\{U_0\} - \{V_0\} \) is a nonzero nilpotent element of \(A(R_0G) \), and the Corollary is proved.
NOTE ON ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS

LOUIS J. RATLIFF, JR.¹

All rings in this paper are assumed to be commutative rings with a unit element. If B is an ideal in a ring R, the integral closure B_a of B is the set of elements x in R such that x satisfies an equation of the form $x^n + b_1x^{n-1} + \cdots + b_n = 0$, where $b_i \in B_i$ $(i = 1, \cdots, n)$. An ideal B in R is semi-prime in case B is an intersection of prime ideals. If R is an integral domain, then R is normal in case R is integrally closed in its quotient field. If P is a semi-local (Noetherian) ring, then P is analytically unramified in case the completion of P (with respect to the powers of the Jacobson radical of R) contains no nonzero nilpotent elements.

Let R be a semi-local ring with Jacobson radical J, and let R^* be the completion of R. In [2], Zariski proved that if R is a normal local integral domain, and if there is a nonzero element x in J such that pR^* is semi-prime, for every prime divisor p of xR, then R is analytically unramified. In [1, p. 132] Nagata proved that if R is a semi-local integral domain, and if there is a nonzero element x in J such that, for every prime divisor p of xR, pR^* is semi-prime and R_p is a valuation ring, then R is analytically unramified. (The condition R_p is a valuation ring holds if R is normal.) The main purpose of this note is to extend Nagata's result to the case where R is a semi-local ring (Theorem 1). This extension will be given after first proving a

Received by the editors March 29, 1965.

¹ Work on this paper was supported in part by the National Science Foundation. Grant GP3595.