Nilpotent elements in rings of integral representations

Author:
Irving Reiner

Journal:
Proc. Amer. Math. Soc. **17** (1966), 270-274

MSC:
Primary 20.80

DOI:
https://doi.org/10.1090/S0002-9939-1966-0188306-5

MathSciNet review:
0188306

Full-text PDF

References | Similar Articles | Additional Information

**[1]**Charles W. Curtis and Irving Reiner,*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR**0144979****[2]**J. A. Green,*A transfer theorem for modular representations*, J. Algebra**1**(1964), 73–84. MR**0162843**, https://doi.org/10.1016/0021-8693(64)90009-2**[3]**M. F. O’Reilly,*On the semisimplicity of the modular representation algebra of a finite group*, Illinois J. Math.**9**(1965), 261–276. MR**0174641****[4]**Irving Reiner,*The integral representation ring of a finite group*, Michigan Math. J.**12**(1965), 11–22. MR**0172937**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20.80

Retrieve articles in all journals with MSC: 20.80

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1966-0188306-5

Article copyright:
© Copyright 1966
American Mathematical Society