INCLUSION RELATIONS AMONG ORLICZ SPACES

ROBERT WELLAND

This paper contains two results; the first extends to a wide class of Orlicz spaces the statement, due to Krasnosel'skii and Rutickii [1, p. 60], that L_1 is the union of the Orlicz spaces which it contains properly; the second shows that for a wide class of spaces this is not true, i.e. there exists a set of Orlicz spaces no one of which is the union of the Orlicz spaces it contains properly. Here the Orlicz spaces are defined on $[0, 1]$ which is given Lebesgue measure μ.

1. We give in this section several definitions together with some elementary results about Orlicz spaces and convex functions.

Let C be the set of convex symmetric functions $\Phi: (-\infty, \infty) \to [0, \infty)$ such that $\Phi(0) = 0$, $\lim_{s \to 0} \Phi(s)/s = 0$ and $\lim_{s \to \infty} \Phi(s) = \infty$. If Φ and Ω are two elements of C, we say $\Phi \leq \Omega$ if there exist constants c and s_0 such that $\Phi(s) \leq \Omega(cs)$ for all $s \geq s_0$. We say $\Phi \sim \Omega$ if $\Phi \leq \Omega$ and $\Omega \leq \Phi$; we say $\Phi \prec \Omega$ if $\Phi \leq \Omega$ but $\Omega \nless \Phi$. If $\Phi_1 \sim \Phi_2$ and $\Phi_1 \leq \Omega_1$ ($\Phi_1 < \Omega_1$) then $\Phi_2 \leq \Omega_2$ ($\Phi_2 < \Omega_2$).

If $\Phi \in C$, then there exists a nondecreasing function $\phi: [0, \infty) \to [0, \infty)$ such that $\phi(0) = 0$, $\lim_{s \to \infty} \phi(s) = \infty$ and

$$\Phi(s) = \int_0^{|s|} \phi(t) \, dt$$

(see [1, p. 5]). This representation for Φ yields easily the two following inequalities:

1. $$\frac{s}{2} \phi\left(\frac{s}{2}\right) \leq \Phi(s) \leq \phi(s),$$

2. $$2\Phi(s) \leq \Phi(2s).$$

Let

$$L_\phi^\ast = \{f \in L_1: \Phi(cf) \in L_1 \text{ for some positive real number } c\}.$$

The set L_ϕ^\ast is called an Orlicz space. It has a unique uniformity which is compatible with the order relation. Since this uniformity does not intervene in what follows, we do not give its definition; for this see [1, p. 69].

Received by the editors April 26, 1965.

1 This research was supported by N.S.F. grant no. GP2491.

135
The order relations among the elements of C give rise to order relations among the L^*_Φ as follows:

(a) $\Phi \leq \Omega$ implies $L^*_\Phi \subset L^*_\Omega$.

(b) $\Phi = \Omega$ implies $L^*_\Phi = L^*_\Omega$.

(c) $\Phi < \Omega$ implies $L^*_\Phi \subset L^*_\Omega$ but $L^*_\Phi \not\subset L^*_\Omega$.

Statements (a) and (b) are direct consequences of the definitions; while (c) is a special case of

(d) $\limsup_{s \to \infty} \frac{\Omega(\alpha s)}{\Phi(s)} = \infty$ for all $\alpha > 0$ implies there exists $f \in L^*_\Phi$ such that $f \notin L^*_\Omega$.

Proof. Let E_{ij} be a pairwise disjoint double sequence of intervals in $[0, 1]$ such that $\mu(E_{ij}) \neq 0$, $i, j = 1, 2, \ldots$. For each pair of natural numbers (n, i) there exists a number $s_{ni} > 0$ such that $s > s_{ni}$ implies $\Phi(s)\mu(E_{ni}) > 2^{-i}n^{-2}$. There exist numbers $c_{ni} > s_{ni}$ such that $\Phi(c_{ni})/n > n^2\Phi(c_{ni})$.

Let E_{ni} be a nonempty subinterval of E_{ni} such that $\Phi(c_{ni})\mu(E_{ni}) = 2^{-i}n^{-2}$ and define

$$f(x) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{ij}X_{E_{ij}}(x).$$

It is easy to show that $f \in L^*_\Phi$ but $f \notin L^*_\Omega$.

(e) One can use (a), (b) and (d) to show that $\Phi < \Omega$ if L^*_Ω is a proper subset of L^*_Φ.

2. We say that $\Phi \in C$ satisfies \ast if

$$\limsup_{s \to \infty} \frac{\Phi(2s)}{\Phi(s)} < \infty$$

and we say it satisfies $\ast\ast$ if

$$\liminf_{s \to \infty} \frac{\Phi(2s)}{s\Phi(s)} > 0.$$

These conditions are similar to the Δ_2 and Δ_3 conditioned in [1]. A function Φ which satisfies \ast grows less rapidly than some power and in addition it grows regularly; while a function Φ which satisfies $\ast\ast$ grows like exp. It follows that C contains functions which satisfy neither \ast nor $\ast\ast$.

Theorem 1. Suppose $\Phi \in C$ and Φ satisfies \ast; then, L^*_Φ is the union of the Orlicz spaces it contains properly.

Proof. Let $f \in L^*_\Phi$. We will prove there exists Ω in C such that $\Phi < \Omega$ and such that $f \in L^*_\Omega$. If $f \in L^*_\infty$, we are finished because $L^*_\infty \subset L^*_\Phi$ properly. We will assume that $f(x) \geq 0$ a.e.; this is in order because
Let \(f \in L^* \) iff \(|f| \in L^* \). Let \(c \) be a positive real number such that \(\Phi(cf) \in L_1 \). Define \(\nu(s) = \mu((x: \Phi(cf(x)) \leq s)) \) and recall that

\[
\int_0^1 u(\Phi(cf)) \, d\mu = \int_0^\infty u(s) \, d\nu(s)
\]

whenever \(u \) is integrable with respect to \(d\nu \). The \(sd\nu(s) \) measure of \([0, \infty)\) is finite (let \(u(s) = s \)) so there exists a function \(\omega: [0, \infty) \to [0, \infty) \) such that

(\(a'\)) \(\int_0^\infty s\omega(s) \, d\nu(s) < \infty \),

(\(b'\)) \(\omega \) is nondecreasing,

(\(c'\)) \(\omega(0) = 0 \) and \(\lim_{s \to \infty} \omega(s) = \infty \).

The function

\[
\Omega_0(s) = \int_0^{|s|} \omega(|s|) \, ds
\]

is an element of \(C \) and so \(\Omega(s) = \Omega_0(\Phi(s)) \) \([1, \text{p. 10}]\). The inequality 1 of \(\S 1 \) gives

\[
\int_0^1 \Omega(cf) \, d\mu = \int_0^\infty \Omega_0(s) \, d\nu(s) \leq \int_0^\infty s\omega(s) \, ds < \infty
\]

from which it follows that \(f \in L^*_\Phi \). To complete the proof, we must show \(\Omega > \Phi \). Using inequality 1 again we get

(3) \(\Omega(s) = \Omega_0(\Phi(s)) \geq [\Phi(s)/2]/\omega(\Phi(s)/2) \);

together with 2 this gives \(\Omega(2s) \geq \Phi(s) \) whenever \(s \geq s_0 \). Here \(s_0 \) is any positive number such that \(\omega(\Phi(s_0)/2) / 2 = 1 \). This shows that \(\Omega \geq \Phi \).

Let \(\alpha \) be any positive number. There exist positive numbers \(s_0 \) and \(M(\alpha) \) such that \(\Phi(\alpha s) \geq M(\alpha)\Phi(s) \) if \(s \geq s_0 \); this is true because \(\Phi \) satisfies \(*\). Now this with 3 gives \(\Omega(\alpha s) \geq M(\alpha)\Phi(s)\omega(\Phi(\alpha s)/2)/2 \) for \(s \geq s_0 \) and this in turn gives

\[
\limsup_{s \to \infty} \frac{\Omega(\alpha s)}{\Phi(s)} = \limsup_{s \to \infty} \frac{M(\alpha)\omega(\Phi(\alpha s)/2)}{2} = \infty.
\]

Because \(\alpha \) was arbitrary, we have that \(\Omega \neq \Phi \).

Lemma. Suppose \(\Omega \) and \(\Phi \) are two elements of \(C \) such that for some \(\alpha > 1 \)

\[
\limsup_{s \to \infty} \frac{\Omega(s)}{\Phi(\alpha s)} \geq 1.
\]

Then, if \(t_0 \) is any positive number there exists \(t \geq t_0 \) such that \(\Omega(s) \geq \Phi(s) \) for all \(s \in [t, \alpha t] \).
Proof. Let t_0 be any positive number and let $t \geq t_0$ be any number such that $\Omega(t) \geq \Phi(at)$. Let l' be a straight line through $(t, \Omega(t))$ which lies beneath the graph of Ω; such a line exists because Ω is convex (l' is not necessarily unique). Let l be the straight line, parallel to l' which passes through $(t, \Phi(at))$. Let u, v be the two numbers such that $u < v$ and l passes through the points $(u, \Phi(u))$, $(v, \Phi(v))$. By comparing similar triangles we get

$$\frac{\Phi(v) - \Phi(u)}{v - u} = \frac{\Phi(at) - \Phi(u)}{t - u}.$$

This leads directly to the inequality $v > at$. For $s \in [t, at]$, $(s, \Phi(s))$ is beneath the line l while $(s, \Omega(s))$ is above the line l'. Hence $\Phi(s) \leq \Omega(s)$ for $s \in [t, at]$.

Theorem 2. Suppose $\Phi \in C$ and satisfies $**$; then L^*_Φ is not the union of the Orlicz spaces it contains properly.

Proof. The condition $**$ implies there exists $\alpha > 0$ and s_0 such that $s \geq s_0$ implies $\Phi(2s) > s\Phi(s)$. Let $c_n = 2^ns_0$. Let (E_n) be a sequence of pairwise disjoint subintervals of $[0, 1]$ such that $\Phi(c_n)\mu(E_n) = 2^{-n}$. This is possible because

$$\Phi(c_n) \geq 2^{n(n-1)/2} \frac{n-1}{s_0} \alpha \Phi(s_0).$$

If we set

$$f(x) = \sum_{n=1}^{\infty} c_n X_{E_n}(x)$$

then $\Phi(f) \in L_1$ while $\Phi(2f) \notin L_1$; in fact

$$\int_{E_n} \Phi(2f) \, d\mu \geq 2^ns_0\alpha \Phi(c_n)\mu(E_n) = as_0.$$

Suppose L^*_Φ is a proper subset of L^*_Φ. This is the case only if $\Phi \leq \Omega$. Let k be any number in $(0, 1)$; we will show that $\Omega(kf) \in L_1$ and hence that $f \notin L_\Omega$. The assertion $\Omega > \Phi$ implies that

$$\limsup_{s \to \infty} \frac{\Omega(ks)}{\Phi(2s)} = \infty.$$

Let $t_0 = c_1$ and apply the lemma to find t_1 such that $s \in [t_1, 2t_1]$ implies $\Omega(ks) \geq \Phi(2s)$. Having chosen t_{n-1} choose $t_n > 2t_{n-1}$ such that $s \in [t_n, t_{2n}]$ implies $\Omega(ks) \geq \Phi(2s)$. By induction this yields an infinite sequence of intervals $[t_n, 2t_n]$ each of which contains one of the numbers c_m.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
ON A COMBINATORIAL PROBLEM OF ERDŐS

D. KLEITMAN

Let \(C(n, m) \) denote the binomial coefficient \(n!/(m!n-m!) \). Let \(S \) be a set containing \(N \) elements and let \(X \) be a collection of subsets of \(S \) with the property that if \(A, B \) and \(C \) are distinct elements of \(X \), then \(A \cup B \neq C \). Erdős [1], [2], has conjectured that \(X \) contains at most \(K C(N, [N/2]) \) elements where \(K \) is a constant independent of \(X \) and \(N \). The problem is related to a result of Sperner [3] to the effect that if the collection \(X \) has the more restrictive property that no element of \(X \) contains any other, then \(X \) can have at most \(C(N, [N/2]) \) elements.

We show below that Erdős' conjecture for \(K = 2^{3/2} \) can be deduced directly from Sperner's result.

Let \(L_N \) be defined by

\[
L_N = \sum_{n=1}^{\infty} \Phi(2c_{m_n}) \mu(E_{m_n}) \geq \sum_{n=1}^{\infty} \alpha_s_0.
\]

The proof is completed by observing that

\[
\int_0^1 \Omega(kf) \, df \geq \sum_{n=1}^{\infty} \Phi(2c_{m_n}) \mu(E_{m_n}) \geq \sum_{n=1}^{\infty} \alpha_s_0.
\]

REFERENCE

NORTHEASTERN UNIVERSITY

ON A COMBINATORIAL PROBLEM OF ERDŐS

D. KLEITMAN

Let \(C(n, m) \) denote the binomial coefficient \(n!/(m!n-m!) \). Let \(S \) be a set containing \(N \) elements and let \(X \) be a collection of subsets of \(S \) with the property that if \(A, B \) and \(C \) are distinct elements of \(X \), then \(A \cup B \neq C \). Erdős [1], [2], has conjectured that \(X \) contains at most \(K C(N, [N/2]) \) elements where \(K \) is a constant independent of \(X \) and \(N \). The problem is related to a result of Sperner [3] to the effect that if the collection \(X \) has the more restrictive property that no element of \(X \) contains any other, then \(X \) can have at most \(C(N, [N/2]) \) elements.

We show below that Erdős' conjecture for \(K = 2^{3/2} \) can be deduced directly from Sperner's result.

Let \(L_N \) be defined by

\[
L_N = 2^{1N/21}C(N - [N/2], [N/4]) + 2^{N-[N/2]}C([N/2], [N/4]).
\]

An easy calculation shows that \(L_N \) is always less than \(2^{3/2}C(N, [N/2]) \) to which it is asymptotic for large \(N \). We prove:

Theorem. If \(X \) is a family of subsets of an \(N \) element set \(S \) such that no three distinct \(A, B, C \) in \(X \) satisfy \(A \cup B = C \), then \(X \) has less than \(L_N \) elements.

Proof. For any finite set \(T \) and family \(X \) of subsets of \(T \) define

\[
m_T(X) = \{ A \in X \mid B \in X \text{ and } B \subseteq A \implies B = A \}.
\]

Received by the editors March 9, 1965.