the above mentioned theorem of Cartan and Carathéodory the proof is finished.

References

Princeton University

A CHARACTERIZATION OF TAME 2-SPHERES IN E^3

C. A. Persinger

In this note, the tame 2-spheres in E^3 are characterized partly in terms of homology and the arcs they contain. In a similar way, the compact 2-manifolds with boundary are characterized. If K is a finite topological 2-complex in E^3 and v is a vertex of K, then $\text{St } v$ is the star of v, $\hat{\text{St }} v$ is the open star of v, and $\text{Lk } v = \text{St } v - \hat{\text{St }} v$ is the link of v. The trivial 1-dimensional homology group of K will be denoted by $H_1(K) = 0$.

An n-manifold with boundary is a separable metric space such that each point has a neighborhood whose closure is topologically equivalent to a closed n-cell.

Theorem 1. Let K be a finite topological 2-complex in E^3 such that

(i) K is connected,
(ii) $\text{Lk } v$ is connected for each vertex v in K,
(iii) $H_1(K) = 0$, and
(iv) K contains only tame arcs.

Then K is either a disk or a 2-sphere.

Proof. Since K contains no wild arcs and $\text{Lk } v$ is connected, each 1-simplex in K lies on exactly one or two 2-simplices in K [2]. Since

Presented to the Society, March 29, 1965 under the title *A characterization of tame 2-spheres*; received by the editors May 31, 1965.

1 These results form a part of the author's doctoral dissertation written at the Virginia Polytechnic Institute in 1964 under the direction of Professor P. H. Doyle.
Lk \(v \) is connected, Lk \(v = G \), a connected graph. Again by (iv), no vertex of \(G \) is of order greater than two, and so \(G \) is a 1-manifold with boundary. Thus \(G \) is either an arc or a simple closed curve. So \(St \ v \) is a 2-manifold with boundary, and hence \(K \) is a 2-manifold with boundary. By (iii), \(K \) is either a disk or a 2-sphere.

Corollary 2. If \(K \) satisfies the conditions of the Theorem and if, in addition, no arc in \(K \) separates \(K \), then \(K \) is a 2-sphere.

By the addition of one more condition to Corollary 2, we obtain a characterization of tame 2-spheres in \(E^3 \).

Theorem 3. A necessary and sufficient condition that a finite connected topological 2-complex \(K \) in \(E^3 \) is a tame 2-sphere is that \(K \) satisfies the following conditions:

(i) Lk \(v \) is connected for each vertex \(v \) in \(K \),
(ii) \(H_1(K) = 0 \),
(iii) \(K \) contains only tame arcs,
(iv) No arc in \(K \) separates \(K \), and
(v) \(E^3 - K \) is locally simply connected at each point of \(K \).

Proof. By Corollary 2, \(K \) is a 2-sphere, and by Bing [1], condition (v) insures that \(K \) is tame. Conversely, it is clear that a tame 2-sphere satisfies the conditions.

If the requirement that \(H_1(K) = 0 \) is omitted in Theorem 1, we obtain the following corollary to the proof of Theorem 1.

Theorem 4. A finite topological 2-complex \(K \) in \(E^3 \) is a compact 2-manifold with boundary if and only if \(K \) satisfies the following conditions:

(i) \(K \) is connected,
(ii) Lk \(v \) is connected for each vertex \(v \) in \(K \), and,
(iii) \(K \) contains no wild arcs.

References

Virginia Polytechnic Institute
Air Force Institute of Technology