ON PRIMES OF THE FORM $u^2 + 5v^2$

B. W. BREWER

1. Introduction. A prime p of the form $20k + 1$ or $20k + 9$ admits of the two integral representations $u^2 + 5v^2$ and $a^2 + b^2$ (a odd), each representation being essentially unique. Moreover, the only primes other than 5 admitting of the first representation are those of the indicated form. If p is a prime of the form $20k + 1$ or $20k + 9$ and $a \equiv 0 \pmod{5}$, the author [1] has expressed u in terms of the sum $A_5 = \sum_{x=0}^{p-1} \chi(x(x^4 - 5x^2 + 5))$, where $\chi(m)$ is the quadratic character of m modulo p and $x(x^4 - 5x^2 + 5)$ is the fifth term of the sequence $V_1(x) = x$, $V_2(x) = x^2 - 2$, $V_{n+2}(x) = xV_{n+1}(x) - V_n(x)$ $(n = 1, 2, \cdots)$ (see also A. L. Whiteman, [3], [4]). However, if $a \equiv 0 \pmod{5}$, $A_5 = 0$. In this paper, we consider the sequence $V_1(x, Q) = x$, $V_2(x, Q) = x^2 - 2Q$, $V_{n+2}(x, Q) = xV_{n+1}(x, Q) - QV_n(x, Q)$ $(n = 1, 2, \cdots)$, Q an integer, and study the sum $A_6(Q) = \sum_{x=0}^{p-1} \chi(V_6(x, Q))$. If p is a prime having one of the above forms, we show in general that $A_6(Q) = \pm 4r$ when $\chi(Q) = 1$ and $a \equiv 0 \pmod{5}$ or when $\chi(Q) = -1$ and $a \equiv 0 \pmod{5}$. Specifically, Theorem 2 is concerned with the first case and Theorem 3 with the second case. Theorem 2 reduces to Theorem 4 of [1] when $Q = 1$, and refinements of Theorem 3 for certain classes of primes and specific values of Q appear as Corollary 1 and Corollary 2.

Thanks are due the referee for suggesting certain improvements in Theorem 3.

2. Four lemmas. Let $GF(p^m)$ denote the finite field of p^m elements (p a prime). We state Lemma 1 of [1] for completeness.

Lemma 1. If p is an odd prime, λ a nonzero element of $GF(p^m)$, and λ is of multiplicative period e, then for s a positive integer

$$\sum_{k=0}^{e-1} \lambda^{ks} = \begin{cases} e & \text{if } s \equiv 0 \pmod{e}, \\ 0 & \text{if } s \not\equiv 0 \pmod{e}. \end{cases}$$

The following lemma is a generalization of Lemma 2 of [1].

Lemma 2. Let p be an odd prime and λ a generating element of the multiplicative group of $GF(p^2)$. Let $V_1(x, Q) = x$, $V_2(x, Q) = x^2 - 2Q$, $V_{n+2}(x, Q) = xV_{n+1}(x, Q) - QV_n(x, Q)$ $(n = 1, 2, \cdots)$, where Q is an integer, $\chi(Q) = -1$, and $Q = \lambda^r(p+1)$ ($0 < r \leq p-1$). Let

Presented to the Society, January 26, 1965; received by the editors May 15, 1965 and, in revised form, August 16, 1965.

502
ON PRIMES OF THE FORM $u^2 + 5v^3$

$$\Delta_n(Q) = \sum_{x=0}^{p-1} \chi(V_n(x, Q)), \quad \Omega_n(Q) = \sum_{s=0}^{p-2} \chi(\lambda^{ns(p+1)} + Q^n\lambda^{-ns(p+1)})$$

and

$$\Theta_n(Q) = \sum_{t=0}^{p-1} \chi(\lambda^{n(t(p-1)+r)} + Q^n\lambda^{-n(t(p-1)+r)}).$$

Then $2\Delta_n(Q) = \Omega_n(Q) + \Theta_n(Q)$ ($n = 1, 2, \ldots$).

We note that the conclusion of Lemma 2 also follows if $\chi(Q) = 1$, but we do not have need for this case.

Proof of Lemma 2. Consider the quadratics $y^2 - Py + Q$ obtained by letting P run over the set $0, 1, \ldots, p-1$, and let $\Delta = P^2 - 4Q$. Since $\chi(\Delta) = -1$ and $\sum_{s=0}^{p-1} \chi(\Delta) = -1$, we obtain $(p-1)/2$ quadratics with $\chi(\Delta) = 1$ and $(p+1)/2$ quadratics with $\chi(\Delta) = -1$. If $\chi(\Delta) = 1$, the roots of $y^2 - Py + Q = 0$ in $GF(p^2)$ are of the form $\lambda^{(t-s)(p+1)}$ for some t, $0 \leq t \leq p - 2$. If $\chi(\Delta) = -1$, the roots of $y^2 - Py + Q = 0$ in $GF(p^2)$ are of the form $\lambda^{(t-s)(p-1)+r}$ for some t, $0 \leq t \leq p$. Conversely, $\lambda^{(s,t)(p+1)}$ are roots of $y^2 - Py + Q = 0$ for some integer P such that $\chi(\Delta) = 1$, and $\lambda^{(r-t)(p-1)+s}$ are roots of $y^2 - Py + Q = 0$ for some integer P such that $\chi(\Delta) = -1$.

Let H denote the set of pairs $\alpha_s = \lambda^{(s,t)(p+1)}$, $\alpha'_s = \lambda^{(t-s)(p-1)+r}$ ($s = 0, 1, \ldots, p-2$) and K denote the set of pairs $\beta_t = \lambda^{(t-s)(p-1)+r}$, and $\beta'_t = \lambda^{(r-t)(p-1)+s}$ ($t = 0, 1, \ldots, p$). Now $\alpha_s = \alpha_j$ if and only if $i = j$, and $\alpha_i = \alpha'_j$ if and only if $i + j \equiv r \pmod{p-1}$. Likewise, $\beta_s = \beta_j$ if and only if $i = j$, and since r is odd, $\beta_s = \beta'_j$ if and only if $i + j \equiv r \pmod{p+1}$. Hence there are $(p-1)/2$ distinct pairs in the set H, each pair occurring twice, and $(p+1)/2$ distinct pairs in the set K, each pair occurring twice. Since $\Omega_n(Q) = \sum_{s=0}^{p-2} \chi(\alpha_s^n + \alpha'_n)$ and $\Theta_n(Q) = \sum_{i=0}^{p-1} \chi(\beta_s^n + \beta'_n)$, the lemma follows.

Applying Euler's criterion to $\Omega_n(Q)$ and $\Theta_n(Q)$ in Lemma 2, we obtain

Lemma 3. Let λ, $\Omega_n(Q)$ and $\Theta_n(Q)$ be defined as in Lemma 2. Then

$$\Omega_n(Q) = \sum_{h=0}^{(p-1)/2} \sum_{s=0}^{p-2} \binom{p-1}{2} Q^n h \lambda^{ns(p+1)} (p-4h-1)/2$$

and

$$\Theta_n(Q) = \sum_{h=0}^{(p-1)/2} \sum_{i=0}^{p} \binom{p-1}{2} Q^n h \lambda^{n(t(p-1)+r)} (p-4h-1)/2$$

in $GF(p^2)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Whiteman has given a proof of the following lemma. Part (1) is proved in [3] and part (2) in [4].

Lemma 4. (1) If p is prime and $p = 20k + 1 = u^2 + 5v^2 = a^2 + b^2$ (a odd), then

$$
\binom{10k}{k} \equiv 4u^2 \pmod{p}
$$

and

$$
\binom{10k}{3k} \equiv \begin{cases}
\binom{10k}{k} & \text{or} \binom{10k}{3k} \\
\binom{10k}{3k} & \text{or} \binom{10k}{k}
\end{cases} \pmod{p}
$$

according as $a \equiv 0 \pmod{5}$ or $a \not\equiv 0 \pmod{5}$.

(2) If p is prime and $p = 20k + 9 = u^2 + 5v^2 = a^2 + b^2$ (a odd), then

$$
\binom{10k + 4}{k} \equiv 4u^2 \pmod{p}
$$

and

$$
\binom{10k + 4}{3k + 1} \equiv \begin{cases}
\binom{10k + 4}{k} & \text{or} \binom{10k + 4}{3k + 1} \\
\binom{10k + 4}{3k + 1} & \text{or} \binom{10k + 4}{k}
\end{cases} \pmod{p}
$$

according as $a \equiv 0 \pmod{5}$ or $a \not\equiv 0 \pmod{5}$.

3. **A$_6(Q)$**. We first prove

Theorem 1. Let p be an odd prime, $A_n(Q)$ be defined as in Lemma 2, and $\chi(Q) = \pm 1$. If $\chi(Q') = \chi(Q)$ and $Q' \equiv m^2Q \pmod{p}$, then $A_n(Q') = \chi(m^nA_n(Q)) \ (n = 1, 2, \cdots)$.

Proof. Clearly, Theorem 1 will follow if we show that

$$(1) \quad V_n(mx, Q') \equiv m^nV_n(x, Q) \pmod{p}$$

for $n = 1, 2, \cdots$. We use induction. Now (1) is certainly true for $n = 1$ and $n = 2$. Assume (1) to be true for all $k < n$. Then

$$
V_n(mx, Q') \equiv mxV_{n-1}(mx, Q') - Q'V_{n-2}(mx, Q')
$$

$$
\equiv mxm^{n-1}V_{n-1}(x, Q) - m^2Qm^{n-2}V_{n-2}(x, Q)
$$

$$
\equiv m^n[xV_{n-1}(x, Q) - QV_{n-2}(x, Q)] \equiv m^nV_n(x, Q) \pmod{p},
$$

and Theorem 1 is proved.

Noting that $A_6(Q) = \sum_{z=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$, Theorem 1 and Theorem 4 of [1] imply
Theorem 2. Let \(p \) be an odd prime \((p \neq 5)\), \(\chi(Q) = 1 \), and \(Q \equiv m^2 \pmod{p} \). If \(p \neq u^2 + 5v^2 \), then \(p = 20k + r \) \((r = 3, 7, 11, 13, 17, \text{ or } 19)\) and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = 0.
\]
If \(p = u^2 + 5v^2 \), then either \(p = 20k + 1 = a^2 + b^2 \) \((a \equiv 1 \pmod{4})\), and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases}
0 & \text{if } a \equiv 0 \pmod{5}, \\
-4ux(m) & \text{if } a \not\equiv 0 \pmod{5},
\end{cases}
\]
or \(p = 20k + 9 = a^2 + b^2 \) \((a \equiv 1 \pmod{4})\), and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases}
0 & \text{if } a \equiv 0 \pmod{5}, \\
4ux(m) & \text{if } a \not\equiv 0 \pmod{5}.
\end{cases}
\]

To obtain a representation of \(u \) in terms of a character sum under the hypothesis that \(a \equiv 0 \pmod{5} \), we consider \(\Lambda_6(Q) \) where \(\chi(Q) = -1 \). We prove

Theorem 3. Let \(p \) be an odd prime \((p \neq 5)\) and \(\chi(Q) = -1 \). If \(p \neq u^2 + 5v^2 \), then \(p = 20k + r \) \((r = 3, 7, 11, 13, 17, \text{ or } 19)\), and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = 0.
\]
If \(p = u^2 + 5v^2 \), then either \(p = 20k + 1 = a^2 + b^2 \) \((a \equiv 1 \pmod{4}), \ b \equiv aQ^{(p-1)/4} \pmod{p}\)\), and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
-4u \chi(m) & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]
or \(p = 20k + 9 = a^2 + b^2 \) \((a \equiv 1 \pmod{4}), \ b \equiv aQ^{(p-1)/4} \pmod{p}\)\), and
\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
4u \chi(m) & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

Proof. That \(p = u^2 + 5v^2 \) if and only if \(p = 20k + 1 \) or \(p = 20k + 9 \) is well known. We are concerned, therefore, with the evaluation of the sum \(\Lambda_6(Q) \). If \(p = 20k + r \) \((r = 3, 7, 11, \text{ or } 19)\), \(\Lambda_6(Q) = 0 \) since \(V_6(-x, Q) = -V_6(x, Q) \) and \(\chi(-1) = -1 \). If \(p = 20k + r \) \((r = 13 \text{ or } 17)\), we apply Lemma 3 and then Lemma 1 to \(\Omega_6(Q) \) and \(\Theta_6(Q) \). We obtain
\[\Omega_s(Q) \equiv (p - 1) \left(\frac{\phi - 1}{2} \right) \left(\frac{\phi - 1}{4} \right) Q^{s(p-1)/4} \pmod{p} \]

and

\[\Theta_s(Q) \equiv (p + 1) \left(\frac{\phi - 1}{2} \right) \left(\frac{\phi - 1}{4} \right) Q^{s(p-1)/4} \pmod{p}. \]

Hence from Lemma 2, we have \(\Lambda_s(Q) \equiv 0 \pmod{p} \). Since \(\Lambda_s(Q) \) is even and numerically less than \(p \), this in turn implies that \(\Lambda_s(Q) = 0 \).

To obtain the value of \(\Lambda_s(Q) \) when \(p = u^2 + 5v^2 \), we again apply Lemma 1 and Lemma 3 to \(\Omega_s(Q) \) and \(\Theta_s(Q) \). If \(p = 20k + 1 \), we obtain

\[\Omega_s(Q) \equiv 2(p - 1) \left[\binom{10k}{k} Q^{5k} + \binom{10k}{3k} Q^{15k} \right] \]

and

\[\Theta_s(Q) \equiv (p + 1) \binom{10k}{5k} Q^{25k} \pmod{p}. \]

If \(p = 20k + 9 \), we obtain

\[\Omega_s(Q) \equiv (p - 1) \binom{10k + 4}{5k + 2} Q^{5(5k+2)} \pmod{p} \]

and

\[\Theta_s(Q) \equiv (p + 1) \binom{10k + 4}{k} [Q^{5k+2} + Q^{9(5k+2)}] \]

\[+ (p + 1) \binom{10k + 4}{3k + 1} [Q^{3(5k+2)} + Q^{7(5k+2)}] \]

\[+ (p + 1) \binom{10k + 4}{5k + 2} Q^{5(5k+2)} \pmod{p}. \]

Since \(\chi(Q) = -1 \), \(Q^{(p-1)/4} \equiv i \pmod{p} \), where \(i^2 \equiv -1 \pmod{p} \). Moreover,

\[\left(\frac{\phi - 1}{2} \right) \left(\frac{\phi - 1}{4} \right) \equiv 2a \pmod{p}, \]

where \(a \equiv 1 \pmod{4} \) (Gauss). Hence if \(p = 20k + 1 \), (2) and (3) give
ON PRIMES OF THE FORM \(a^2 + 5v^2\)

\[
\begin{align*}
\Omega_v(Q) & \equiv -2 \left[\binom{10k}{k} - \binom{10k}{3k} \right] i - 2ai \pmod{p} \\
\Theta_v(Q) & \equiv 2ai \pmod{p}; \\
\text{and if } p = 20k + 9, (4) \text{ and } (5) \text{ give } \\
\Omega_v(Q) & \equiv -2ai \pmod{p} \\
\text{and}
\end{align*}
\]

\[
\begin{align*}
\Theta_v(Q) & \equiv 2 \left[\binom{10k + 4}{k} - \binom{10k + 4}{3k + 1} \right] i + 2ai \pmod{p}.
\end{align*}
\]

With a suitable choice of the sign of \(u\) when \(a \equiv 0 \pmod{5}\), Lemma 4 implies that

\[
\begin{cases}
\binom{10k}{k} - \binom{10k}{3k} \equiv 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
-4ui \pmod{p} & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

when \(p = 20k + 1\), and

\[
\begin{cases}
\binom{10k + 4}{k} - \binom{10k + 4}{3k + 1} \equiv 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
-4ui \pmod{p} & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

when \(p = 20k + 9\). Thus if \(p = 20k + 1\),

\[
\Omega_v(Q) \equiv \begin{cases}
-2ai \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
-8u - 2ai \pmod{p} & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

and \(\Theta_v(Q) \equiv 2ai \pmod{p}\); and if \(p = 20k + 9\), \(\Theta_v(Q) \equiv -2ai \pmod{p}\) and

\[
\begin{cases}
2ai \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
8u + 2ai \pmod{p} & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

Hence from Lemma 2, we have

\[
\Lambda_v(Q) \equiv \begin{cases}
0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
-4u \pmod{p} & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

when \(p = 20k + 1\), and

\[
\Lambda_v(Q) \equiv \begin{cases}
0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\
4u \pmod{p} & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

when \(p = 20k + 9\).
Since \(p \geq 29 \) and \(|u| < p^{1/2} \), it follows that \(|4u| < p \). Then as before, \(\Lambda_6(Q) \) being even and numerically less than \(p \), (9) and (10) imply that

\[
\Lambda_6(Q) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
-4u & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

when \(p = 20k+1 \), and

\[
\Lambda_6(Q) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
4u & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

when \(p = 20k+9 \).

Now suppose that \(a \equiv 0 \pmod{5} \). Since \(p = a^2 + b^2 \) (\(a \equiv 1 \pmod{4} \)), the sign of \(b \) can be chosen such that \(b \equiv ai \pmod{p} \). Since \(\Omega_6(Q) = \sum_{x=0}^{p-1} \chi(x^5 + Qx^2) = \sum_{x=0}^{p-1} \chi(x(x^{10} + Q^5)) \), \(\Omega_6(Q) \) is even. From Lemma 2, we have \(2\Lambda_n(Q) = \Omega_6(Q) + \Theta_6(Q) \), and hence \(\Theta_6(Q) \) is even. Moreover, since \(p \geq 29 \) and \(|b| < p^{1/2} \), it follows that \(|2b| < p - 1 \), and then (7) and (8) imply that \(\Theta_6(Q) = 2b \) when \(p = 20k+1 \) and \(\Omega_6(Q) = -2b \) when \(p = 20k+9 \). Then from Lemma 2, we have \(-8u = 2b + \Omega_6(Q) \) if \(p = 20k+1 \), and \(8u = -2b + \Theta_6(Q) \) if \(p = 20k+9 \). Now it is easily seen that \(\Omega_6(Q) \equiv 0 \pmod{5} \) if \(p = 20k+1 \), and \(\Theta_6(Q) \equiv 0 \pmod{5} \) if \(p = 20k+9 \). Hence \(u \equiv b \pmod{5} \) when \(p = 20k+1 \) or \(p = 20k+9 \) and Theorem 3 is proved.

If \(p \) is prime and \(p = 8k+5 = a^2 + b^2 \) (\(a \equiv 1 \pmod{4} \), \(b/2 \equiv 1 \pmod{4} \)), E. Lehmer [2] has shown that \(2^{(p-1)/4} \equiv b/a \pmod{p} \). If \(p \) is prime and \(p = 12k+5 = a^2 + b^2 \) (\(a \equiv 1 \pmod{4} \), \(b \equiv a \pmod{3} \)), the author [1] has shown that the Jacobsthal sum \(\Phi_2(-3) = 2b \), and hence \((-3)^{(p-1)/4} \equiv \Phi_2(-3)/\Phi_2(1) \equiv -b/a \pmod{p} \). Using these results and Theorem 1, we obtain the following two corollaries to Theorem 3.

Corollary 1. Let \(p \) be a prime of the form \(40k+21 \) or \(40k+29 \), \(\chi(Q) = -1 \), and \(Q \equiv 2m^2 \pmod{p} \). If \(p = 40k+21 \), then \(p = u^2 + 5v^2 = a^2 + b^2 \) (\(b \) even, \(b/2 \equiv 1 \pmod{4} \)), and

\[
\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))
\]

\[
= \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
-4u\chi(m) & \text{if } a \equiv 0 \pmod{5},
\end{cases}
\]

If \(p = 40k+29 \), then \(p = u^2 + 5v^2 = a^2 + b^2 \) (\(b \) even, \(b/2 \equiv 1 \pmod{4} \)), and
\[
\sum_{x=0}^{p-1} x(x^4 - 5Qx^2 + 5Q^2) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
4ux(x) (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

Corollary 2. Let \(p \) be a prime of the form \(60k+41 \), or \(60k+29 \), \(x(Q) = -1 \), and \(Q \equiv -3m^2 \pmod{p} \). If \(p = 60k+41 \), then \(p = u^2 + 5v^2 = a^2 + b^2 \pmod{4} \), and

\[
\sum_{x=0}^{p-1} x(x^4 - 5Qx^2 + 5Q^2) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
4ux(x) (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

If \(p = 60k+29 \), then \(p = u^2 + 5v^2 = a^2 + b^2 \pmod{4} \), and

\[
\sum_{x=0}^{p-1} x(x^4 - 5Qx^2 + 5Q^2) = \begin{cases}
0 & \text{if } a \not\equiv 0 \pmod{5}, \\
-4ux(x) (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}.
\end{cases}
\]

References

Texas A & M University