It is possible that these together with the constant unitary matrices generate the whole class of such functions, but we have not been able to prove it.

References

Institute for Defense Analyses, Princeton, New Jersey

ON THE RADIUS OF UNIVALENCE OF CERTAIN ANALYTIC FUNCTIONS

A. E. LIVINGSTON

Let \mathcal{C} denote the class of functions f regular and univalent in $E = \{z| |z| < 1\}$, which satisfy $f(0) = 0$ and $f'(0) = 1$ and which are close-to-convex in E. Let \mathcal{K} and \mathcal{S}^* denote the subfamilies of \mathcal{C}, made up of functions which are convex and starlike in E, respectively. Recently, Libera [2] has shown that if f is a member of \mathcal{K}, \mathcal{S}^* or \mathcal{C}, then the function $F(z) = (2/z)f_0 f(t)dt$ is also a member of \mathcal{K}, \mathcal{S}^* or \mathcal{C}. It is the purpose of this paper to investigate the converse question. That is, if F is in \mathcal{S}^*, what is the radius of starlikeness of the function $f(z) = [1/2] [zF(z)]'$? Similar questions are answered under the assumption that F is in \mathcal{K} or in \mathcal{C}. Robinson [5] has shown that if F is only assumed to be univalent in E, then f is starlike for $|z| < .38$. He pointed out that it is probable that f is univalent for $|z| < (1/2)$. We obtain this result under the added assumption that F is a member of \mathcal{K}, \mathcal{S}^* or \mathcal{C}.

The method of proof used in Theorem 1 has recently been employed by MacGregor [4].

Presented to the Society, December 6, 1965; received by the editors April 28, 1965.
Theorem 1. If \(F \) is in \(S^* \), then \(f(z) = \left[1/2 \right] [z F(z)]' \) is starlike for \(|z| < 1/2 \). This result is sharp.

Proof. Since \(F \) is in \(S^* \), \(\text{Re}[zF'(z)/F(z)] > 0 \) for \(|z| < 1 \). Thus there exists \(\phi \), regular in \(E \), such that \(|\phi(z)| \leq 1 \) for \(z \) in \(E \) and such that

\[
\frac{zf(z) - \int_0^* f(t) dt}{\int_0^* f(t) dt} = \frac{zF'(z)}{F(z)} = \frac{1 - z\phi(z)}{1 + z\phi(z)}.
\]

Thus

\[
f(z) = \frac{2}{z(1 + z\phi(z))} \int_0^* f(t) dt.
\]

Therefore

\[
\frac{zf'(z)}{f(z)} = \frac{-z\phi(z) - z^2\phi'(z)}{1 + z\phi(z)} + \frac{zf(z) - \int_0^* f(t) dt}{\int_0^* f(t) dt}
\]

(1)

\[
= \frac{1 - 2z\phi(z) - z^2\phi'(z)}{1 + z\phi(z)}.
\]

In order to determine where \(f \) is starlike, we must determine those values of \(z \) for which the real part of the right hand side of (1) is positive. This condition is equivalent to

(2) \(\text{Re}[1 - 2z\phi(z) - z^2\phi'(z)][1 + z\phi(z)] > 0 \).

Condition (2) is equivalent to

(3) \(\text{Re}[z^2\phi'(z)][1 + z\phi(z)] < 1 - 2 |z|^2 |\phi(z)|^2 - \text{Re}[z\phi(z)] \).

Using the well known result

\[
|\phi'(z)| \leq \frac{1}{1 - |z|^2} (1 - |\phi(z)|^2) \quad (|z| < 1)
\]

and using the fact that \(\text{Re} \left[z\phi(z) \right] \leq |z| |\phi(z)| \), we see that condition (3) will be satisfied if

(4) \[
\frac{|z|^2}{1 - |z|^2} (1 - |\phi(z)|^2)(1 + |z||\phi(z)|) < (1 - 2|z||\phi(z)|)(1 + |z||\phi(z)|).
\]
Condition (4) is equivalent to

\[(5) \quad 2 |z|^2 + 2 |z| |\phi(z)| (1 - |z|^2) - |z|^2 |\phi(z)|^2 < 1.\]

Thus, we need only show that condition (5) holds for all functions \(\phi\), regular in \(E\) and satisfying \(|\phi(z)| \leq 1\) for \(z\) in \(E\), provided \(|z| < 1/2\).

If in (5) we let \(a = |z|\) and \(x = |\phi(z)|\), then it is sufficient to show that for any fixed \(a, 0 \leq a < 1/2\), the function \(p(x) = 2a^2 + 2a(1 - a^2)x - a^2x^2\) is bounded above by one for \(0 \leq x \leq 1\). It is easily seen that \(p'(x) > 0, 0 \leq x \leq 1\), provided that \(a < (\sqrt{5} - 1)/2\) and therefore if \(a < 1/2\). Thus, if \(0 \leq a < 1/2\), the maximum value of \(p(x)\), \(0 \leq x \leq 1\), is given by \(q(a) = 2a + a^2 - 2a^3\). Since \(q'(a) > 0\) for \(0 \leq a < 1/2\), \(q(a) < q(1/2) = 1\) for \(0 \leq a < 1/2\). Condition (2) is thus seen to be satisfied, if \(|z| < 1/2\). Hence \(f\) is starlike for \(|z| < 1/2\).

To see that the result is sharp, let \(F(z) = z/(1-z)^2\) which is in \(S^*\). Then, \(f(z) = z/(1-z)^2\) and \(zf'(z)/f(z) = (1+2z)/(1-z) = 0\) for \(z = -1/2\). Thus, \(f\) is not starlike in any circle \(|z| < r\), if \(r > 1/2\).

Theorem 2. If \(F\) is in \(K\), then \(f(z) = [1/2][zf(z)]'\) is univalent in \(E\) and is convex for \(|z| < 1/2\). This result is sharp.

Proof. We have \(2f'(z) = 2F'(z) + zf''(z)\). Thus

\[(6) \quad 2 \text{Re} \left[\frac{f'(z)}{F'(z)} \right] = 2 + \text{Re} \left[\frac{zf''(z)}{F'(z)} \right].\]

Since \(F\) is in \(K\), the right hand side of (6) is positive in \(E\). Thus, \(f\) is close-to-convex relative to \(F\) and therefore is univalent in \(E\).

To show that \(f\) is convex for \(|z| < 1/2\), we notice that \(zf''(z) = [1/2]\cdot[zF'(z)']'\). Since \(F\) is in \(K\), \(zF'\) is in \(S^*\). Therefore, by Theorem 1, \(zf'\) is starlike for \(|z| < 1/2\) and thus \(f\) is convex for \(|z| < 1/2\).

To see that the result is sharp, let \(F(z) = z/(1-z)^2\) which is in \(K\). Then \(f(z) = (2z - z^2)/2(1-z)^2\) and \(1 + [zf''(z)/F'(z)] = (1 + 2z)/(1-z) = 0\) for \(z = -1/2\). Therefore \(f\) is not convex in any circle \(|z| < r\), if \(r > 1/2\).

Theorem 3. If \(F\) is in \(C\), then \(f(z) = 1/2[zF(z)]'\) is close-to-convex for \(|z| < 1/2\). This result is sharp.

Proof. Since \(F\) is in \(C\), there exists \(G\) in \(S^*\) such that

\[(7) \quad \text{Re} \left[\frac{zf'(z)}{G(z)} \right] > 0 \quad (|z| < 1).\]

Let \(g(z) = [1/2][zG(z)]'\), then, by Theorem 1, \(g\) is starlike for \(|z| < 1/2\). To prove the theorem, it is sufficient to show that \(\text{Re} \left[\frac{zf''(z)}{g(z)} \right] > 0\) for \(|z| < 1/2\). We have
Thus, by (7), we may set

\[
\frac{zf'(z)}{G(z)} = \frac{zf(z) - \int_0^z f(t)dt}{\int_0^z g(t)dt}.
\]

(8)

where \(P\) is regular in \(E\) and satisfies \(P(0) = 1\) and \(\text{Re}(P(z)) > 0\) for \(z\) in \(E\). We thus have

\[
zf'(z) = P(z)g(z) + P'(z) \int_0^z g(t)dt.
\]

(9)

Therefore

\[
\frac{zf'(z)}{g(z)} = P(z) + P'(z) \left[\int_0^z \frac{g(t)dt}{g(z)} \right].
\]

(10)

Using the known result \([1], [3], [6]\)

\[
\left| P'(z) \right| \leq \frac{2 \text{Re}[P(z)]}{1 - |z|^2} \quad (|z| < 1),
\]

we have from (10)

\[
\text{Re} \left[\frac{zf'(z)}{g(z)} \right] \geq \text{Re}[P(z)] \left[1 - \frac{2}{1 - |z|^2} \left| \int_0^z \frac{g(t)dt}{g(z)} \right| \right].
\]

(11)

Moreover

\[
\frac{zg(z)}{\int_0^z g(t)dt} = \frac{[1/2] \{z[zG(z)]'\}}{[1/2] (zG(z))} = 1 + \frac{zG'(z)}{G(z)}.
\]

Since \(G\) is in \(S^*\), \(\text{Re}[zG'(z)/G(z)] > 0\) for \(z\) in \(E\). Thus \(\text{Re}[zg(z)/(\int_0^z g(t)dt)] > 1\) for \(z\) in \(E\). Hence, there exists \(\phi\), regular in \(E\) and satisfying \(\left| \phi(z) \right| \leq 1\) for \(z\) in \(E\), such that \(zg(z)/(\int_0^z g(t)dt) = \)
Therefore

\[\left| \int_0^z g(t) dt \right| = \left| \frac{z + z^2 \phi(z)}{2g(z)} \right| \leq \frac{1}{2} \left(|z| + |z|^2 \right). \]

Combining (11) and (12) we have

\[\text{Re} \left[\frac{zf'(z)}{g(z)} \right] > \text{Re} \left[P(z) \right] \left[1 - \frac{|z|}{1 - |z|^2} \right] \]

(13)

\[= \text{Re} \left[P(z) \right] \left[\frac{1 - |z|}{1 - |z|^2} \right]. \]

The right hand side of (13) is positive provided \(|z| < 1/2\).

To see that the result is sharp, let \(F(z) = z/(1 - z)^2 \) which is in \(S^* \)
and therefore in \(C \). Then \(f(z) = z/(1 - z)^3 \) and \(f'(z) = (1 + 2z)/(1 - z)^4 \)
= 0 for \(z = -1/2 \). Thus, \(f(z) \) is not univalent and therefore not close-to-convex in \(|z| < r\), if \(r > 1/2\).

An interesting subclass of \(C \) is that class made up of functions \(F \)
which satisfy \(\text{Re} \left[F'(z) \right] > 0 \) for \(z \) in \(E \) [3]. Theorem 3 can be improved
for this subclass.

Theorem 4. Let \(F \) be such that \(\text{Re} \left[F'(z) \right] > 0 \) for \(z \) in \(E \) and let
\(f(z) = \left[1/2 \right] \left[zF(z) \right]' \), then \(\text{Re} \left[f'(z) \right] > 0 \) for \(|z| < (\sqrt{5} - 1)/2\). This result
is sharp.

Proof. Let \(F'(z) = P(z) \) where \(P(0) = 1 \) and \(\text{Re}(P(z)) > 0 \) for \(z \) in \(E \).
We then have

\[2f'(z) = 2F'(z) + zF''(z) = 2P(z) + zP'(z). \]

Using again the fact that \(|P'(z)| \leq 2 \text{Re}(P(z))/[1 - |z|^2] \) for \(z \) in \(E \), we have

\[2 \text{Re}(f'(z)) \geq 2 \text{Re}(P(z)) - |z| |P'(z)| \]

(14)

\[\geq 2 \text{Re}(P(z)) \left[1 - \frac{|z|}{1 - |z|^2} \right] \]

\[= 2 \text{Re}(P(z)) \left[\frac{1 - |z| - |z|^2}{1 - |z|^2} \right]. \]

The right hand side of (14) is positive provided \(|z| < (\sqrt{5} - 1)/2\).

To see that the result is sharp, let \(F(z) = -z - 2 \log(1 - z) \). Then
\(f(z) = \left[1/2 \right] \left[2z^2/(1 - z) - 2 \log(1 - z) \right] \) and \(f'(z) = (1 + z - z^2)/(1 - z)^2 \)
= 0 for \(z = (1 - \sqrt{5})/2 \).
References

Lafayette College