Let G be an arbitrary discrete group and let $\Gamma = C[G]$ be its group algebra over the complex numbers C. If \mathcal{R} is an irreducible representation of the algebra then $\mathcal{R}(\Gamma) = P$ is primitive and hence isomorphic to a dense set of linear transformations over D, the commuting ring of \mathcal{R} [4, p. 28]. Let E be the center of D. If $\dim_EL < \infty$ then we say that \mathcal{R} is finite and since P is central simple over E [4, p. 122] we have $\dim_EL = m^2$. We set $m = \deg \mathcal{R}$, the degree of \mathcal{R}. If G is finite then C is always the commuting ring of \mathcal{R} so this agrees with the usual definition of degree.

Again let $P = \mathcal{R}(\Gamma)$. Then by a theorem of Amitsur [1] $\deg \mathcal{R} \leq n$ if and only if for every $2n$ elements x_1, \ldots, x_{2n} in P we have

$$[x_1, \ldots, x_{2n}] = \sum \pm x_{i_1}x_{i_2}\cdots x_{i_{2n}} = 0.$$

The above is known as the standard identity of degree $2n$. For infinite discrete groups, representation theory is not particularly well behaved. Therefore we will make use of these identities in $C[G]$.

If $g \in G$ we say that g is in the kernel of \mathcal{R} if and only if $\mathcal{R}(g) = \mathcal{R}(1) = 1$. We set $\kappa_n(G) = \bigcap \ker \mathcal{R}$ where \mathcal{R} runs over all irreducible representations of degree $> n$. We study groups G with $\kappa_n(G) > 1$. It is convenient to let $b(G) = \text{lub}$ of the degrees of the irreducible representations of G. If $b(G) \leq n$ then trivially $\kappa_n(G) = G$. Thus we will be interested mainly in groups with $b(G) > n$.

Theorem 1. Let $I_n = I_n[G]$ be the linear subspace of $C[G]$ spanned by all terms of the form $[x_1, \ldots, x_{2n}]$ with $x_i \in C[G]$. Then $g \in \kappa_n(G)$ if and only if $(1 - g)I_n = 0$.

Proof. First let $g \in \kappa_n(G)$. Let \mathcal{R} be any irreducible representation of $C[G]$ and consider $\mathcal{R}((1 - g)I_n)$. If $\deg \mathcal{R} > n$ then $\mathcal{R}(1 - g) = 0$. If $\deg \mathcal{R} \leq n$ then $\mathcal{R}(I_n) = 0$. Hence in either case $\mathcal{R}((1 - g)I_n) = 0$. Since this holds for all \mathcal{R} and $C[G]$ is semi simple [5, Theorem 5.2] this yields $(1 - g)I_n = 0$.

Conversely let $(1 - g)I_n = 0$. Let $J_n = \{a \in C[G] | aI_n = 0\}$ so that J_n is clearly a left ideal of $C[G]$. To show that it is a right ideal we need only show for $h \in G$ that $J_nh \subseteq J_n$. Since clearly $h^{-1}I_nh = I_n$ we have

Received by the editors April 17, 1965.

1 This research was supported, in part, by funds received under NSF Grant GP-3933.

487
\[(J_n h) I_n = (J_n h) (h^{-1} I_n h) = J_n I_n h = 0\]

and so \(J_n\) is a two-sided ideal. Let \(\mathfrak{R}\) be an irreducible representation of \(C[G]\) of degree \(> n\). Let \(V\) be the corresponding left \(C[G]\)-module and set \(V^* = \{ v \in V \mid J_nv = 0 \}\). Since \(J_n\) is a right ideal, \(V^*\) is a submodule of \(V\). Hence either \(V^* = V\) or \(V^* = 0\). Now \(\deg \mathfrak{R} > n\) so \(\mathfrak{R}(C[G])\) does not satisfy the standard identity of degree \(2n\). Hence \(\mathfrak{R}(I_n) \neq 0\) and \(I_n V \neq 0\). But \(J_n(I_n V) = 0\) so \(I_n V \subseteq V^*\) and hence \(V^* = V\). Since \((1-g) \in J_n\) and \(J_n V = 0\) we have \(\mathfrak{R}(g) = \mathfrak{R}(1)\) and the result follows.

Now \(I_n[G]\) is spanned as a linear space over \(C\) by all terms of the form \([g_1, \cdots, g_{2n}]\) with \(g_i \in G\). Hence we have the following.

Corollary 2. Let \(b(G) > n\). Then \(| \mathfrak{R}_n(G) | \leq \frac{1}{r} (2n)!\).

Proof. Now \(b(G) > n\) implies that \(I_n[G] \neq 0\). Thus we can find \(g_i \in G\) with \(\beta = [g_1, \cdots, g_{2n}] \neq 0\). If \(g \in \mathfrak{R}_n(G)\) then \((1-g)\beta = 0\) so that \(g \beta = \beta\). If \(\beta = \sum c_i h_i\) with \(c_i \in C\) and \(h_i \in G\) then \(\mathfrak{R}_n(G)\) permutes all those \(h_i\) with \(c_i > 0\). Thus \(\mathfrak{R}_n(G)\) divides \(r\), the number of such \(h_i\). Since \(\beta \neq 0\) and \(\sum c_i = 0\) we see that \(1 \leq r \leq \frac{1}{r} (2n)!\) and the result follows.

If \(H\) is a subgroup of \(G\) then \(C[H]\) is naturally embedded in \(C[G]\). Moreover in this embedding \(I_n[H] \subseteq I_n[G]\). With this remark we have

Corollary 3. Let \(H\) be a subgroup of \(G\) with \(b(H) > n\). Then \(\mathfrak{R}_n(G) \subseteq \mathfrak{R}_n(H)\).

Proof. Since \(b(H) > n\) there exists \(h_i \in H\) with \(\beta = [h_1, \cdots, h_{2n}] \neq 0\). Let \(g \in \mathfrak{R}_n(G)\). Since \(\beta = g \beta\) we see clearly that \(g \in \langle h_1, \cdots, h_{2n} \rangle \subseteq H\). Now \((1-g) I_n[G] = 0\) implies \((1-g) I_n[H] = 0\) so \(g \in \mathfrak{R}_n(H)\).

The following result essentially reduces the study of groups \(G\) with \(b(G) > n\) and \(\mathfrak{R}_n(G) > 1\) to a study of finite groups.

Theorem 4. Let \(b(G) > n\) and \(\mathfrak{R}_n(G) > 1\). Let \(\beta_1, \cdots, \beta_m\) be a finite number of nonzero elements of \(C[G]\). Then we can find subgroups \(H\) and \(N\) of \(G\) such that

(i) \(\beta_1, \cdots, \beta_m \in C[H]\);
(ii) \(b(H) > n\);
(iii) \(\mathfrak{R}_n(H) = \mathfrak{R}_n(G)\);
(iv) \(N\) is a normal subgroup of \(H\) with \(\overline{H} = H/N\) finite and \(b(\overline{H}) > n\);
(v) under the natural homomorphism \(C[H] \to C[\overline{H}]\) we have \(\beta_i \to \overline{\beta_i} \neq 0\) and \(\mathfrak{R}_n(G) \cong [\mathfrak{R}_n(G)]^\sim = \mathfrak{R}_n(\overline{H})\).

Proof. First we show that we can find group elements \(g_{ij}\) with
$i = 1, 2, \cdots, r$ and $j = 1, 2, \cdots, 2n$ such that $g \in \mathfrak{K}_n(G)$ if and only if for all i

$$(1 - g)[g_{i,1}, g_{i,2}, \cdots, g_{i,2n}] = 0.$$

Let \mathcal{S} be the set of all terms $\alpha = [g_1, \cdots, g_{2n}] \neq 0$ with $g_i \in G$. For each such $\alpha \in \mathcal{S}$ set $\mathfrak{K}^\alpha = \{g \in G \mid (1 - g)\alpha = 0\}$. As in the proof of Corollary 2, $|\mathfrak{K}^\alpha| \leq \frac{1}{2}(2n)!$. By Theorem 1, $\mathfrak{K}_n(G) = \bigcap \mathfrak{K}^\alpha$. Since each \mathfrak{K}^α is finite, clearly only a finite intersection is required.

For the remainder of the proof fix such a set $\{g_{ij}\} \subseteq G$. Let H be a finitely generated subgroup of G with $H \supseteq \{g_{ij}\}$ and $\beta_1, \cdots, \beta_m \in \mathcal{C}[H]$. Such groups clearly exist. Clearly $b(H) > n$ and we have $\mathfrak{K}_n(H) \supseteq \mathfrak{K}_n(G)$. But if $h \in \mathfrak{K}_n(H)$ then $(1 - h)[g_{i,1}, \cdots, g_{i,2n}] = 0$ for all i so $h \in \mathfrak{K}_n(G)$. Hence $\mathfrak{K}_n(H) = \mathfrak{K}_n(G)$. With this choice of H we have (i), (ii) and (iii) of Theorem 4 satisfied.

We now show that H is a subdirect product of finite groups. Fix $g \in \mathfrak{K}_n(H)$ with $g \neq 1$. Let h be any nonidentity element of H. In $\mathcal{C}[H]$ the expression $\gamma = (1 - g)(1 - h)$ is nonzero since otherwise $1 + gh = g + h$ and so $1 = g$ or h. Since $\mathcal{C}[H]$ is semisimple there exists an irreducible representation \mathcal{R} of $\mathcal{C}[H]$ with $\mathcal{R}(\gamma) \neq 0$. Hence $\mathcal{R}(g) \neq 1$ and $\mathcal{R}(h) \neq 1$. The first of these implies that $\deg \mathcal{R} \leq n$. Hence we conclude that H is a subdirect product of linear groups of finite degree. By Proposition 7.3 of [3], each such linear group being finitely generated is the subdirect product of finite groups. Hence the result follows.

Now only a finite number of group elements of H occur in the expressions for the β_i and the $[g_{i,1}, \cdots, g_{i,2n}]$. Let these be h_1, \cdots, h_s. Then we can write $\beta_i = \sum c_{ij} h_j$ and $[g_{i,1}, \cdots, g_{i,2n}] = \sum d_{ij} h_j$ with $c_{ij}, d_{ij} \in \mathcal{C}$. Let \mathfrak{D} be the finite set containing (1) $\mathfrak{K}_n(H)$, (2) all elements of the form $h_j h_k^{-1}$, and (3) all elements of the form $h_j h_j^{-1} h_k h_k^{-1}$. By the above there exists a normal subgroup N of H of finite index with $N \cap \mathfrak{D} = \{1\}$. We show now that with this N, (iv) and (v) of Theorem 4 follow.

Since $N \cap \mathfrak{D} = \{1\}$ and $h_j h_k^{-1} \in \mathfrak{D}$ it follows that under the homomorphism $H \to \overline{H} = H/N$, that \overline{h}_j (the image of h_j) is not equal to \overline{h}_k. With this we see that $\overline{\beta}_i \neq 0$ and that $[\overline{g}_{i,1}, \cdots, \overline{g}_{i,2n}] \neq 0$. The latter implies in addition that $b(\overline{H}) > n$. Since any irreducible representation of $\mathcal{C}[\overline{H}]$ can be viewed as one of $\mathcal{C}[H]$ we have $N \mathfrak{K}_n(H)/N \subseteq \mathfrak{K}_n(H)$. But $N \mathfrak{K}_n(H)/N \approx \mathfrak{K}_n(\overline{H})/(\mathcal{N} \cap \mathfrak{K}_n(H)) \approx \mathfrak{K}_n(H)$ since $N \cap \mathfrak{K}_n(H) = 1$. Hence $\mathfrak{K}_n(H) = \mathfrak{K}_n(G)$ is contained isomorphically in $\mathfrak{K}_n(\overline{H})$. We need only show that the isomorphism is onto. Let $\overline{g} \in \mathfrak{K}_n(\overline{H})$ with g an inverse image of \overline{g}. It suffices to show that $g \in N \mathfrak{K}_n(H)$.
Since \(\tilde{g} \in \mathfrak{g}_n(H) \) we have for all \(i \)
\[
\tilde{g} [\tilde{g}_{i1}, \ldots, \tilde{g}_{i2n}] = [\tilde{g}_{i1}, \ldots, \tilde{g}_{i2n}].
\]
In \(C[G] \) this yields clearly
\[
g(\sum d_{ij} h_j) = \sum d_{ij} n_{ij} h_j
\]
with \(n_{ij} \in N \). This follows since all the \(h_j \) are distinct. We show now that all the \(n_{ij} \) are equal. Consider one such element \(n_{ij} h_j \). This comes from a term \(g h_j' \) on the left of the above equation. Thus \(g h_j' = n_{ij} h_j \) or \(g = n_{ij} h_j h_j^{-1} \). Replacing \(i \) by \(i' \), \(j \) by \(k \), and \(j' \) by \(k' \) we also have \(g = n_{i'k} h_k h_k^{-1} \). Thus
\[
n_{ij}^{-1} n_{i'k} = h_j h_j^{-1} h_k h_k^{-1} \in N \cap 3 = \{1\}
\]
so \(n_{ij} = n_{i'k} \). Let their common value be \(n_{11} \). Then for all \(i \)
\[
n_{11}^{-1} g [g_{i1}, \ldots, g_{i2n}] = [g_{i1}, \ldots, g_{i2n}].
\]
By the choice of the \(g_{ij} \) this implies that \(n_{11}^{-1} g \in \mathfrak{g}_n(G) = \mathfrak{g}_n(H) \) and \(g \in N \mathfrak{g}_n(H) \). This completes the proof.

As an application of the above result we prove

Theorem 5. Let \(\mathfrak{g}_n(G) > 1 \). Then \(b(G) = n^2 \).

Proof. Suppose by way of contradiction that \(b(G) > n^2 = m \). Then we can find group elements \(g_1, \ldots, g_{2m} \) such that \([g_1, \ldots, g_{2m}] \neq 0 \).
Set \(\beta_i = g_i \) and \(\beta_{2m+1} = [g_{11}, \ldots, g_{2m}] \). Applying Theorem 4 we obtain a finite group \(\bar{H} \) with \(\mathfrak{g}_n(\bar{H}) > 1 \) and containing elements \(\tilde{g}_1, \ldots, \tilde{g}_{2m} \) with \([\tilde{g}_1, \ldots, \tilde{g}_{2m}] \neq 0 \). Hence \(b(\bar{H}) > n^2 \).

Let \(h \in \mathfrak{g}_n(\bar{H}) \) with \(h \neq 1 \). Let \(\theta \) be an irreducible complex character of \(\bar{H} \) of degree \(> n^2 \). This exists since \(b(\bar{H}) > n^2 \). Clearly \(h \) is in the kernel of \(\theta \), that is \(\theta(h) = \theta(1) = \deg \theta \). Since \(C[H] \) is semisimple we can find an irreducible character \(\chi \) of \(\bar{H} \) with \(h \) not in the kernel of \(\chi \).
Let \(\theta \chi = \sum a_i \chi_i \) where the \(\chi_i \) are irreducible. Since \(h \in \text{kernel of } \theta \chi \) there exists a \(\chi_i \), say \(\chi_1 \) with \(h \in \text{kernel } \chi_1 \). Now \(\chi_1 \) is a constituent of \(\theta \chi \) so
\[
1 \leq [\theta \chi, \chi_1] = [\theta, \chi_1]
\]
where \([\cdot, \cdot] \) denotes the usual inner product of characters. Hence \(\theta \) is a constituent of \(\chi_1 \). This yields
\[
n^2 < \deg \theta \leq \deg \chi_1 = (\deg \chi)(\deg \chi_1).
\]
Clearly at least one of \(\deg \chi \) or \(\deg \chi_1 \) is \(> n \) and this is the required contradiction.
By Theorem F of [3] groups G with $b(G) \leq n^2$ all have abelian subgroups of index $\leq J(2n^2)$, where J is the function associated with Jordan's theorem on finite linear groups. Thus $\mathfrak{R}_n(G) > 1$ is a rather restrictive condition for a group to satisfy. We discuss now a method of constructing a class of groups G with $b(G) > n$ and $\mathfrak{R}_n(G) > 1$.

Let p be a fixed prime and let $e \geq p$. Suppose we have e groups H_i each having a central subgroup $Z_i = \langle z_i \rangle$ of order p. Set
\[a_i = \text{minimal degree of irreducible character } \theta_i \text{ of } H_i \text{ with } Z_i \subseteq \ker \theta_i; \]
\[b_i = b(H_i); \]
\[c_i = b(H_i/Z_i). \]

We suppose further that for all i
\[(1) \quad (b_i/c_i) > \prod_{j=1}^e (b_j/a_j). \]

Let U be an abelian group of type (p, p) generated by $u, v \in U$. We define a homomorphism of
\[Z_1 \times Z_2 \times \cdots \times Z_e \to U \]
by $z_i \mapsto uv^i$. This is clearly onto. Let the kernel be N. Then N is a central and hence normal subgroup of $H = H_1 \times H_2 \times \cdots \times H_e$. Set $G = H/N$ so that $G \supseteq U$, a central subgroup of type (p, p). Set $n+1 = \prod a_i$. We show that $v \in \mathfrak{R}_n(G)$ and that $b(G) > n$.

Let θ be an irreducible character of G. Then since U is central $\theta|_U = (\deg \theta)\lambda$ where λ is a linear character of U. Hence some subgroup of order p of U is the kernel of θ. The subgroups of U are of course $\langle v \rangle$ and $\langle uv^i \rangle$ for $i = 1, 2, \cdots, p$. Since G is a homomorphic image of H, θ can be viewed as a character of H. In H we write $\theta = \theta_1\theta_2 \cdots \theta_e$ where θ_i is an irreducible character of H_i.

Suppose first that $\langle v \rangle \subseteq \ker \theta$. Then for some $i = 1, 2, \cdots, p$ we have $\langle uv^i \rangle \subseteq \ker \theta$. Then clearly in H, $z_i \in \ker \theta_i$. Hence $\deg \theta_i \leq c_i$ and of course for $j \neq i$, $\deg \theta_j \leq b_j$. Thus
\[\deg \theta \leq (\prod b_j)(c_i/b_i) < \prod a_j = n + 1. \]

Hence $\deg \theta \leq n$ and $v \in \mathfrak{R}_n(G)$. Now choose θ to be a character of $G/\langle v \rangle$ which is faithful on cyclic $U/\langle v \rangle$. Viewed in H we see that for all i, $z_i \in \ker \theta_i$. Hence $\deg \theta_i \geq a_i$ and so $\deg \theta \geq \prod a_i = n + 1$. Therefore $b(G) > n$ and the result follows.

Using the above we can easily construct some examples.

Example 6. Let each H_i be a nonabelian group of order p^3. Then
\(a_i = p, \ b_i = p \) and \(c_i = 1 \) and so equation (1) is satisfied. This yields groups \(G \) nilpotent of class 2.

Indecomposable nonnilpotent groups with nontrivial kernels can be obtained as follows.

Example 7. Let \(P \) denote the quaternion group of order 8 if \(p = 2 \) or the nonabelian group of order \(p^3 \) and period \(p \) if \(p \) is odd. Let \(Z \) be the center of \(P \). We have \(|Z| = p \). Let \(A \) denote the group of automorphisms of \(P \) which centralize \(Z \). \(A \) is easily seen to be isomorphic to the Symplectic group \(S_p(p) \) whose order is \(p(p + 1)(p - 1) \). Let \(\alpha \in A \) be of prime order \(q \neq p \) and let \(H \) be the semidirect product of \(P \) by the cyclic group \(\langle \alpha \rangle \). Thus \(P \) is normal in \(H \) with index \(q \) and \(Z \) is central in \(H \).

Let \(\chi \) be an irreducible character of \(H \). By Proposition 1.2 of [2], either \(\chi|P \) is irreducible or \(\chi|P \) is the sum of \(q \) conjugate characters under the action of \(\langle \alpha \rangle \). In the first case \(\deg \chi = 1 \) or \(p \). In the second case let \(\phi \) be an irreducible constituent of \(\chi|P \). If \(\deg \phi = p \) then \(\phi \) vanishes off \(Z \). Since \(\alpha \) centralizes \(Z \), \(\phi^\alpha = \phi \), a contradiction. Hence \(\deg \phi = 1 \) and \(\deg \chi = q \). Thus \(H \) has characters of degree 1, \(p \) and \(q \) only. Moreover if \(H = H_i \) we have easily \(a_i = p, \ b_i = \max(p, q) \) and \(c_i = q \).

If \(p = 2 \) choose \(q = 3 \). Then \(b(H) = 3 \) and \(Z \subseteq \mathfrak{Z}(H) \). If \(p > 2 \) then choose \(q \) to divide \(p(p + 1)(p - 1) \) so \(p > q \). Hence in this case equation (1) is satisfied and the group \(G \) constructed has the required property.

References

University of California, Los Angeles