EXTENSIONS OF COMPLETELY 0-SIMPLE SEMIGROUPS
BY COMPLETELY 0-SIMPLE SEMIGROUPS

R. J. WARNE

Let S and T be disjoint semigroups, T having a zero element, O'. A semigroup (V, O) is called an extension of S by T if it contains S as an ideal and if the Rees factor semigroup V/S is isomorphic to T. We shall say that V is determined by a partial homomorphism if there exists a partial homomorphism \(A \rightarrow \overline{A} \) of \(T\setminus O' \) into S such that \(A \circ B = AB \) if \(AB \neq O' \), \(A \circ B = AB \) if \(AB = O' \), \(A \circ s = \overline{As} \), \(s \circ A = s\overline{A} \), and \(s \circ t = st \) where \(s, t \) in S and the operations in S and T are denoted by juxtaposition. The purpose of this note is to give a necessary and sufficient condition that V be determined by a partial homomorphism when S is a completely 0-simple semigroup and T is a completely 0-simple semigroup. Since these partial homomorphisms are known mod group homomorphisms [1, p. 109, Theorem 3.14], our extensions may be given an explicit form. A corollary to our theorem will include an important theorem due to W. D. Munn [1, p. 143, Theorem 4.22]. Our result should have important applications to the study of finite semigroups and to semigroups with some finiteness condition.

If S is any subset of a semigroup, \(\xi(S) \) will denote the set of idempotents of S and \(S^* \) will denote the set of nonzero elements of S. \(\mathfrak{R}, \mathfrak{L}, \mathfrak{D} \) and \(\mathfrak{E} \) will denote Green's relations [1, p. 47]. If \(a \in S \), \(R_a \) will denote the \(\mathfrak{R} \)-class containing a. If \(e \) and \(f \) are idempotents and \(ef = fe = e \), we say \(e \) is under \(f \) and write \(e \prec f \). Basic definitions are given in [1]. Likewise references to the fundamental work of Clifford, Green, and Munn will be found in [1].

Lemma. Let V be an extension of a completely 0-simple semigroup S by a completely 0-simple semigroup T, and let 0 be the zero of S (hence, 0 is also the zero of V). If there is some \(E \in \xi(T^*) \) such that \(ESE = 0 \), then V is given by the partial homomorphism \(\xi: T^* \rightarrow S \) which maps every element of \(T^* \) to 0.

Proof. Let \(E \in \xi(T^*) \) such that \(ESE = 0 \). If \(F \in \xi(T^*) \), there exists \(Y \in T^* \) such that \(E \mathfrak{R} Y \) and \(Y \mathfrak{L} F \) [1, p. 79, Theorem 2.51]. Thus,
Extending of Completely 0-Simple Semigroups

Let \(EY = Y \) and there exists \(U \in T^* \) such that \(UY = F \). Let \(s \in S \). Now, \(ESY = ESEY = 0 \), \(EYSY = 0 \), \(USY = 0 \), \(USY = 0 \), \(FSF = 0 \), and \(FSF = 0 \). Thus, \(FSF = 0 \) for all \(F \in \varepsilon(T^*) \). Now suppose that \(A \in R_E \cap L_F \) where \(E, F \in \varepsilon(T^*) \). Let \(h \in S \) and \(hA \in Lg \) for some \(g \in E_S \). Since \(uhA = g \) for some \(u \in S \), \(gF = uhAF = g \). Thus, \(Fg = FgF = 0 \). Hence \(gF = g0 = 0 = gg = g \) and \(hA = 0 \). Similarly \(Ah = 0 \). Now define \(A \xi = 0 \) for all \(A \in T^* \). Clearly \(\xi \) is a partial homomorphism of \(T^* \) into \(S \). If \(AB = s \in S \), \(AB = (EA)B = Es = 0 = (A\xi)(B\xi) \).

Theorem. An extension \(V \) of a completely 0-simple semigroup \(S \) by a completely 0-simple semigroup \(T \) is given by a partial homomorphism if and only if under each nonzero idempotent of \(T \) there exists at most one nonzero idempotent of \(S \).

Proof. Suppose that under each nonzero idempotent of \(T \) there exists at most one nonzero idempotent of \(S \). By virtue of the lemma, we may assume that \(ESE \neq 0 \) for all \(E \in \varepsilon(T^*) \). We will first show that under each nonzero idempotent \(E \in T^* \), there exists a unique idempotent \(e \in S^* \) and that \(ESE = H_e U_0 \). Let \(a \in ESE \) and \(a \neq 0 \). There exists \(x \in ESE \) such that \(axa = a \). Thus \(ax = e \in E(S^*) \) and \(e \leq E \), i.e., \(e \) is the unique idempotent of \(S^* \) which lies under \(E \). Hence \(ax = e \) and \(ESE \subseteq H_e U_0 \). If \(b \in H_e \), \(bE = beE = be = b = Eb \) and \(ESE = H_e U_0 \). Let \(A \in R_E \cap L_F \) where \(E, F \in \varepsilon(T^*) \), and let \(e \) and \(f \) be the unique idempotents of \(S^* \) under \(E \) and \(F \) respectively. We will show that if \(h \in S, hA \neq 0 \) implies that \(hA \in L_f \) and \(Ah \neq 0 \) implies that \(Ah \in R_e \). We consider only the first case, the other case being similar. Now, \(hA \in Lg \) for some \(g \in \varepsilon(S^*) \). As in the proof of the lemma, we show that \(gF = g \). There exists \(k \in S^* \) such that \(gk = k \) and \(k \neq f \). Thus, \(kF = kgF = kg = fk = FfF = Fk \) and \(k \in FSF \). Hence \(k \in H_f \) and \(hA \in L_f \). Next suppose that \(A \) is also an element of \(R_E \cap L_F \), where \(E' \) and \(F' \in \varepsilon(T^*) \) and let \(e' \) and \(f' \) denote the unique idempotents under \(E' \) and \(F' \) respectively. We will show that \(eAf = e'Af' \) and hence it will follow that we may write \(A^e = eAf \) where \(\xi \) is a single valued mapping of \(T^* \) into \(S \). We first note that \(Ff = F, F'F = F', fF' = f', \) and \(f'F = f' \). Thus, \(FSFF'FS' = FSFSF' \). Since \(f \in SFS, SFS = S, \) and \(f = FfF' \in FSF, F'F' = H_f \cup 0 \). Thus \(H_f H_f \neq 0 \) and \(f^f = H_f H_f \). In an analogous manner, we show that \(e \neq e' \). If \(e' E = 0, e' EE' = 0 \) and \(e' = 0 \). Hence \(e' E = 0 \) and similarly \(Ff' = 0 \). Thus, \(e' Af' = e' EA Ff' f = e' E (Ff')f = e' E Af \). We next show that \(\xi \) is a partial homomorphism of \(T^* \) into \(S \). Let \(B \in R_g \cap L_H \) where \(G, H \in \varepsilon(T^*) \), and let \(g \) and \(h \) denote the unique idempotents of \(S^* \) under
526 R. J. WARNE

G and H respectively. If $AB \neq O'$, $AB \in R_E \cap L_H$ [1, p. 79, Theorem 2.52]. Thus $(AB)\xi = eABh$ and $A\xi B\xi = eAfgBh = [(eA)f][g(Bh)]$. Since $A \in E$, $eA \in e$ and $eA \neq 0$. Similarly, $Bh \neq 0$ and hence $(AB)\xi = A\xi B\xi$. Now, let $b \in S$. If $eAfb \neq 0$, $eAfb = ((eA)f)b = (eA)b = e(AB) = Ab$. If $Ab \neq 0$, we may reverse the steps. Thus $Ab = (A\xi)b$ in all cases. Similarly $bA = b(A\xi)$. Now suppose that $AB = s \in S$. Then, $s = sH = sh = (AB)h$. If $s \neq 0$, $A(Bh) = A\xi Bh = A\xi gBh = A\xi B\xi$ and $AB = A\xi B\xi \neq 0$. If $A\xi B\xi \neq 0$, $A\xi B\xi = ((eA)f)(g(Bh)) = eA(g(Bh)) = ((eA)g)(Bh) = (e(Ag))(Bh) = (Ag)(Bh) = A(g(Bh)) = A(Bh) = s$. Thus, in all cases, $AB = A\xi B\xi$.

Conversely, suppose that the extension V is given by a partial homomorphism ξ of T^* into S. First suppose that $A\xi = 0$ for some $A \in T^*$. Let $U = \{A \in T^* : A\xi = 0\}$ and let $U' = U \cup 0$. Clearly, U' is a nonzero ideal of T and hence $U' = T$, i.e., $A\xi = 0$ for all $A \in T^*$. In this case, if $E \in \mathcal{E}(T^*)$, 0 is the only idempotent under E. If $A\xi \neq 0$ for all $A \in T^*$, $E\xi$ is the unique idempotent of S^* under E.

Corollary. An extension V of a completely simple semigroup S by a completely 0-simple semigroup T is given by a partial homomorphism if and only if under each nonzero idempotent of T there exists at most one idempotent of S.

Remark. In the statement of the theorem, we may replace T by a regular semigroup with zero in which every nonzero idempotent is primitive [1]. This follows since such a semigroup is an orthogonal sum of completely 0-simple semigroups [2].

Acknowledgement. We wish to thank Professor Mario Petrich for a helpful suggestion in relation to the paper.

References

West Virginia University