FINITE INTERPOLATION FOR ANALYTIC FUNCTIONS WITH FINITE DIRICHLET INTEGRALS

MITSURU NAKAI

The finite interpolation problem for AD-functions on planar (zero genus) Riemann surfaces was completely solved by Sario [2] and Rodin [1]. We shall extend their result to the case of Riemann surfaces with finite genus.

Theorem. Let R be an open Riemann surface of finite genus. Given a finite number of distinct points ξ_k ($k = 1, 2, \cdots, n$) in R, local parameters z_k at ξ_k with $z_k(\xi_k) = 0$ ($k = 1, 2, \cdots, n$) and complex numbers α_k ($\nu = 0, 1, \cdots, m; k = 1, 2, \cdots, n$). Then there exists a bounded analytic function f with finite Dirichlet integral on R such that

$$\frac{d^n f}{dz_k^n}(\xi_k) = \alpha_k \quad (\nu = 0, 1, \cdots, m; k = 1, 2, \cdots, n)$$

if and only if R does not belong to the class 0_{AD}.

Proof. The necessity of the condition $R \not\in 0_{AD}$ is evident. We have to show the solvability of (1) under the condition $R \not\in 0_{AD}$. Since R has finite genus, $R \not\in 0_{AD}$ implies the existence of a nonconstant ABD-function $F(z)$ on R. Let R^* be a closed Riemann surface which contains R as a subsurface. Choose a point ξ_0 in $R - \{\xi_1, \xi_2, \cdots, \xi_n\}$ such that $F(\xi_0) \neq F(\xi_k)$ ($k = 1, 2, \cdots, n$). For each fixed k ($k = 1, 2, \cdots, n$), by Riemann-Roch's theorem, there exists a meromorphic function $r_k(z)$ on R^* such that $r_k(z)$ has a simple pole at ξ_k and a pole of order n_k at ξ_0 and regular on $R^* - \{\xi_0, \xi_k\}$. Let m_k be the order of zero of the function $\prod_{k=1}^{n} (F(z) - F(\xi_j))^{m+1}$ at ξ_k and let $s = \max \{m_kn_k; k = 1, 2, \cdots, n\}$. Put

$$H(z) = (F(z) - F(\xi_0))^s \prod_{j=1}^{n} (F(z) - F(\xi_j))^{m+1},$$

which belongs to the class $ABD(R)$. By construction, $(d^{m_k}H/dz_k^{m_k})(\xi_k) \neq 0$ and $(z_kr_k)(\xi_k) \neq 0$. Hence for each ν ($\nu = 0, 1, \cdots, m$), we may set

$$H_{\nu}(z) = \left[(\nu)! \cdot \frac{d^{m_k}H}{dz_k^{m_k}}(\xi_k)((z_kr_k)(\xi_k))^{m_k-\nu} \right]^{-1} \cdot (r_k(z))^{m_k-\nu} \cdot H(z).$$

Received by the editors August 18, 1965.

1 This work was sponsored by the U. S. Army Research Office, Durham, Grant DA-AROD-31-124-G499, University of California, Los Angeles.
Again from the construction it is easy to see that $H_{\nu k}$ belongs to $\text{ABD}(R)$ and for each k ($k = 1, 2, \ldots, n$),

$$H_{\nu k}(\zeta_j) = \delta_{k j} \quad (j = 1, 2, \ldots, n)$$

and moreover for each fixed ν ($\nu = 1, 2, \ldots, m$),

$$\frac{d^\mu H_{\nu k}}{d\zeta_j^\mu} (\zeta_j) = 0 \quad (\mu = 0, 1, \ldots, \nu - 1; j = 1, 2, \ldots, n),$$

$$\frac{d^\rho H_{\nu k}}{d\zeta_j^\rho} (\zeta_j) = \delta_{k j} \quad (j = 1, 2, \ldots, n).$$

Define $m + 1$ functions $P_\nu(z) (\nu = 0, \ldots, m)$ on R inductively by

$$P_\nu(z) = P_{\nu-1}(z) + \sum_{j=1}^{n} \left(\alpha_{\nu j} - \frac{d^2 P_{\nu-1}}{dz_j^2} (\zeta_j) \right) H_{\nu j}(z) \quad (\nu = 0, \ldots, m)$$

with $P_{-1} = 0$. Then $f(z) = P_m(z)$ belongs to $\text{ABD}(R)$ and satisfies (1).

Corollary. Let R be an open Riemann surface of finite genus not belonging to the class 0_{AD} and $\mathcal{F} = \mathcal{F}((\zeta_k), (z_k), (\alpha_{\nu k}))$ be the class of all AD-functions f on R satisfying the interpolating condition (1). Then the class \mathcal{F} is not empty and there exists a unique function f_0 in \mathcal{F} such that

$$D(f) = D(f_0) + D(f - f_0)$$

for any f in \mathcal{F} and a fortiori f_0 is the unique solution with minimum norm of the interpolation problem given by (1):

$$D(f_0) = \min \{ D(f); f \in \mathcal{F} \}.$$

Proof. For each closed parametric disk K_k with local parameter z_k ($k = 1, 2, \ldots, n$) and for any relatively compact parametric disk U with local parameter z such that $z_k \in U$ ($k = 1, 2, \ldots, n$), by the local subharmonicity of $|f''|^2$ for $f \in \mathcal{F}$ and Cauchy's inequalities, we can find a constant c_U such that

$$|f_1(z) - f_2(z)|^2 + \sum_{k=1}^{n} \sum_{\nu=0}^{m} \left| \frac{d^2 f_1}{dz_k^{\nu}} (z_k) - \frac{d^2 f_2}{dz_k^{\nu}} (z_k) \right|^2 \leq c_U D(f_1 - f_2)$$

for any $z \in U$, $z_k \in K_k$ ($k = 1, 2, \ldots, n$) and $f_1, f_2 \in \mathcal{F}$. Let $\{f_n\}$ be a sequence such that $\{f_n\} \subset \mathcal{F}$ and $\lim_n D(f_n) = d = \inf \{ D(f); f \in \mathcal{F} \}$. Since $(f_n + f_{n+p})/2 \in \mathcal{F}$ and

$$D(f_n - f_{n+p}) = 2(D(f_n) + D(f_{n+p})) - 4 D \left(\frac{f_n + f_{n+p}}{2} \right) \leq 2(D(f_n) + D(f_{n+p})) - 4d,$$
we conclude that $\lim_n D(f_n - f_{n+p}) = 0$ for any \(p \). This with (2) gives the existence of a function \(f_0 \) in \(\mathcal{F} \) such that $\lim_n D(f_n - f_0) = 0$ so that $D(f_0) = d$. For any $f \in \mathcal{F}$ and any complex number \(\lambda, f_0 + \lambda(f - f_0) \in \mathcal{F} \). Hence $D(f_0 + \lambda(f - f_0)) \geq D(f_0)$. Whence it follows that $D(f_0, f - f_0) = 0$. Therefore $D(f) = D(f_0 + (f - f_0)) = D(f_0) + D(f - f_0) = d + D(f - f_0)$. Thus $D(f) = \lambda$ if and only if $f = f_0$.

References
