ON \(k \)-SPACES AND FUNCTION SPACES

R. W. BAGLEY AND J. S. YANG

Let \(F \) be a family of continuous functions from a topological space \(X \) to a topological space \(Y \). Denote by \(\mathcal{C} \) the compact-open topology on \(F \). In this paper we consider the problem of when the product of two topological spaces is a \(k \)-space and the related question: When does compactness of \((F, \mathcal{C})\) or, more general, local compactness imply that \(\mathcal{C} \) is jointly continuous? It is shown that the product of a locally compact Hausdorff space with a Hausdorff \(k \)-space is a \(k \)-space. This is used to prove that \(\mathcal{C} \) is jointly continuous when \((F, \mathcal{C})\) is locally compact and \(X \) is a Hausdorff \(k \)-space. These results are combined with a theorem of R. Arens [1] to construct an example of two \(k \)-spaces whose product is not a \(k \)-space. We also prove a generalization of the Ascoli Theorem 7.21 [2, Theorem 21, Chapter 7]. In a remark following this theorem Kelley points out that it can be extended to \(k \)-spaces by weakening the condition on even continuity. We show that the theorem holds for Hausdorff \(k \)-spaces without alteration, Theorem 4. The same remark holds for [2, Theorem 7.17].

THEOREM 1. If \(X \) is a locally compact Hausdorff space and \(Y \) is a Hausdorff \(k \)-space, then \(X \times Y \) is a \(k \)-space.

PROOF. Let \(C \) be a subset of \(X \times Y \) which intersects every compact set in a closed set. Let \((x, y)\) \(\in \overline{C} \), \(V \) be a compact neighborhood of \(x \) and \(U \) any compact neighborhood of \(x \) contained in \(V \). Define \(T = \pi_1(C \cap (V \times \{y\})) \) and \(S = \pi_2(C \cap (U \times Y)) \) where \(\pi_1, \pi_2 \) are the projections into \(X, Y \) respectively. If \(A \) is any compact subset of \(Y \), then \(S \cap A = \pi_2(C \cap (U \times A)) \). Thus, \(S \) is closed since \(Y \) is a \(k \)-space and Hausdorff. If \(W \) is a neighborhood of \(y \), then \(C \cap (U \times W) \neq \emptyset \) and \(S \cap W = \pi_2(C \cap (U \times W)) \neq \emptyset \). Thus, it follows that \(y \in S \) and \(U \cap T \neq \emptyset \). Since \(T \) is closed and \(U \) was an arbitrary compact neighborhood of \(x \) contained in \(V \), \(x \in T \) and hence \((x, y) \in C \). The proof is complete.

LEMMA. Let \(X \) and \(Y \) be Hausdorff spaces, \(F \subseteq C(X, Y) \) and let \(\tau \) be a topology on \(F \) which contains \(\mathcal{C} \) and such that \((F, \tau) \times X \) is a \(k \)-space. Then \(\tau \) is jointly continuous for \(F \).

PROOF. Let \(C \) be a closed subset of \(Y \) and \(K \) a compact subset of

Received by the editors October 24, 1964 and, in revised form, September 21, 1965.

703
Let \(M = KT \cap P^{-1}(C) \) and \((f, x) \in M\), where \(P \) is the evaluation mapping of \(F \times X \) into \(Y \). If \((f, x) \notin K\), then obviously \((f, x) \notin M\).

Suppose \((f, x) \in K\) and \((f, x) \in P^{-1}(C)\). Let \(U = Y - C \) and \(K_x \) be the projection of \(K \) into \(X \). There is a compact neighborhood \(N \) of \(x \) relative to \(K_x \) such that \(f(N) \subseteq U \) and \(P([N, U] \times N) \subseteq U \), where \([N, U] = \{g \in F | g(N) \subseteq U\}\). Thus, \(([N, U] \times N) \cap P^{-1}(C) = \emptyset\). It follows that \((f, x)\) is not in the closure, relative to \((F, \tau) \times K_x\), of \(M \). But, since \(M \subseteq K \subseteq F \times K_x \), we have \((f, x) \notin \overline{M}\). Since \(F \times X \) is a \(k \)-space, \(P^{-1}(C) \) is closed and the proof is complete.

The product of two \(k \)-spaces need not be a \(k \)-space. As a matter of fact the example below shows that, even if one of the spaces is metric, the product need not be a \(k \)-space. We have not been able to settle the question whether the product of two hereditary \(k \)-spaces is a \(k \)-space.

Example. Let \(X \) be the dual space of an infinite dimensional Fréchet space with the compact-open topology. As Warner [4, p. 267] points out, \(X \) is a hemicompact \(k \)-space which is not locally compact. Now \(F = C(X, [0, 1]) \) with the compact-open topology is metrizable, [4, Theorem 2]. Suppose \(X \times F \) is a \(k \)-space. Then, by the Lemma the compact-open topology is jointly continuous. Since \(X \) is completely regular, it follows from [1, Theorem 3] that \(X \) is locally compact which is a contradiction, and consequently the product \(X \times F \) is not a \(k \)-space. It follows from [3, Proposition 4] that \(X \times F \) is paracompact.

The following is a generalization of (b) [1, p. 486]. (Cf. [4, Theorems 13 and 17].)

Remark. If \(X \) is completely regular and \(X \times C(X, [0, 1]) \) is a \(k \)-space, where \(C(X, [0, 1]) \) has the compact-open topology, then \(X \) is locally compact.

Proof. The proof is immediate using [1, Theorem 3] and the Lemma.

From Theorem 1 and the Lemma we have,

Theorem 2. If \((F, \mathcal{E})\) is locally compact, \(X \) a Hausdorff \(k \)-space and \(Y \) Hausdorff, then \(\mathcal{E} \) is jointly continuous for \(F \).

Using Theorem 2, we now have generalizations of [2, Theorem 7.17 and Theorem 7.21]. The proofs are the same as Kelley's by virtue of Theorem 2.

Theorem 3. Let \(X \) be a Hausdorff \(k \)-space and \(Y \) a Hausdorff uniform space. Let \(F \subseteq C(X, Y) \). Then \((F, \mathcal{E})\) is compact if and only if

(a) \((F, \mathcal{E})\) is closed.
(b) $F(x)$ has compact closure for each $x \in X$.
(c) F is equicontinuous.

Theorem 4. Let X be a Hausdorff k-space and Y a regular Hausdorff space. Let $F \subseteq C(X, Y)$. Then (F, \mathcal{C}) is compact if and only if
(a) (F, \mathcal{C}) is closed.
(b) $F(x)$ has compact closure for each $x \in X$.
(c) F is evenly continuous.

Added in proof. T. S. Wu has referred us to a paper of D. E. Cohen (Spaces with weak topology, Quart. J. Math. Oxford Ser. 5 (1954), 77–80) in which a theorem of J. H. C. Whitehead was used to obtain Theorem 1. The proof here is direct and simpler.

References

University of Miami