ON THE SQUARES OF ORIENTED MANIFOLDS

R. E. STONG

1. Introduction. The object of this paper is to give another proof of the Milnor conjecture [2]:

Theorem 1. The square of an oriented manifold is unoriented cobordant to a Spin manifold.

This result was proved by Anderson [1]. The proof given here is patterned directly on the method used by Wall [4] in the determination of the oriented cobordism ring. This method provides additional information, and the principal result will be:

Theorem 2. Let S' denote the subset of $H^*(BO, \mathbb{Z}_2)$ consisting of all classes w_{2i+1}. Let S be either $S' \cup \{w_2\}$ or $S' \cup \{w_2^2\}$. Let M be a manifold such that every Stiefel-Whitney number of M divisible by a class of S is zero. Then:

(a) For $S = S' \cup \{w_2^2\}$, M is unoriented cobordant to a complex manifold M' with w_2^2 zero.

(b) For $S = S' \cup \{w_2\}$, M is unoriented cobordant to the sum of an SU manifold and a polynomial in the quaternionic projective spaces $QP(2n)$.

Theorem 1 is a direct consequence of the case $S = S' \cup \{w_2\}$, and one has the improved result:

Corollary. If M is an oriented manifold with dimension not divisible by 4, then $M \times M$ is unoriented cobordant to an SU manifold.

2. Proofs of the results. First consider the case $S = S' \cup \{w_2^2\}$ and suppose M has all Stiefel-Whitney numbers divisible by elements of S zero.

By Milnor [2], M is cobordant to a complex manifold N, since all numbers of M divisible by elements of S' are zero. Then let $M' \subset N \times CP(1)$ be a submanifold dual to $c_1(N) + \alpha$, $\alpha \in H^2(CP(1), \mathbb{Z})$ being the usual generator. The total Chern class of M' is the restriction to M' of

\[
\frac{c(N) \cdot (1 + \alpha)^2}{1 + \alpha + c_1(N)} = 1 + \alpha + (c_2(N) + \alpha c_1(N)) + \cdots ,
\]

Received by the editors August 8, 1965.

1 The author is indebted to the National Science Foundation for financial support during this work.
so $c_2'(M')$ is the restriction to M' of α^2, hence is zero. Reducing mod 2,
\[w(M') = \frac{w(N)}{1 + \alpha + w_2(N)}, \]
and M' is dual to $\alpha + w_2(N)$. Then for any $\omega = (i_1, \ldots, i_r)$, \(\sum i_s = \dim M\), \(w_\omega = w_{i_1} \cdots w_{i_r}\), one has
\[w_\omega(M') = w_\omega(N) + (\alpha + w_2(N))v_\omega, \]
where v_ω is a polynomial in α and the $w_i(N)$. Multiplying by $(\alpha + w_2(N))$ and evaluating on $N \times \text{CP}(1)$ gives
\[w_\omega[M'] = \{ w_\omega(N) \cdot (\alpha + w_2(N)) + (\alpha + w_2(N))^2v_\omega \}[N \times \text{CP}(1)], \]
and the second term is zero since every number of N divisible by w_2^2 is zero. Then $w_\omega[M'] = w_\omega[N]$ for all ω, and by Thom [3], M' and N are cobordant since they have the same Stiefel-Whitney numbers. This proves part (a) of the theorem.

Note. Using the same process with $\mathbb{RP}(1)$ and its class α gives a direct proof of Wall's result [4] that if M has all numbers divisible by w_2^2 zero, then M is cobordant to M' with $w_2^2 = 0$.

Let W_\ast denote Wall's ring of cobordism classes for which numbers divisible by w_2^2 are zero. Since
\[w_{i_1} \cdots w_{i_r}[N \times N] = \begin{cases} 0 & \text{if any } i_s \text{ is odd,} \\ w_{j_1} \cdots w_{j_r}[N] & \text{if } i_s = 2j_s \text{ for all } s, \end{cases} \]
one has $W_\ast^2 = \{ \alpha^2 | \alpha \in W_\ast \}$ is the set of cobordism classes with numbers divisible by elements of $S^2 \cup \{ w_2^2 \}$ zero.

Let $\partial_1 : W_\ast \to W_\ast$ be the derivation defined by sending the cobordism class of M to the class of a submanifold dual to w_1. If $\partial_2 : W_\ast^2 \to W_\ast^2 : \alpha^2 \mapsto (\partial_1 \alpha)^2$, then ∂_2 is a derivation and sends the cobordism class of M to the class of a manifold N such that $w_\omega[N] = w_2 \cdot w_\omega[M]$ for all ω (by the formula for $w_\omega[A \times A]$).

Now if $\alpha^2 \in W_\ast^2$, let M be a complex manifold with $c_2^2 = 0$ belonging to α^2. Let N be a submanifold dual to c_1 in M. Then $w_\omega[N] = w_2 \cdot w_\omega[M]$ for all ω, so N belongs to $(\partial_1 \alpha)^2 = \partial_2(\alpha^2)$, and N is an SU manifold. Thus $\text{Im } \partial_2$ consists entirely of cobordism classes of SU manifolds.

By Wall [4], $\ker \partial_1/\text{Im } \partial_1$ is the \mathbb{Z}_2 polynomial algebra on the images of the cobordism classes of the complex projective spaces $\text{CP}(2n)$, so $\ker \partial_2/\text{Im } \partial_2$ is the \mathbb{Z}_2 polynomial algebra on the images
of the cobordism classes of the \(\text{CP}(2n)^2 \) (which is the same as that of \(\text{QP}(2n) \)).

Now let \(M \) be any manifold all of whose Stiefel-Whitney numbers divisible by elements of \(S' \cup \{ w_2 \} \) are zero. Then the cobordism class \(\alpha \) of \(M \) belongs to \(\ker \partial_2 \). Thus there is a polynomial \(P \) in the \(\text{QP}(2n) \) with cobordism class \(\gamma \) for which \(\alpha - \gamma \in \text{Im } \partial_2 \). Hence there is an SU manifold \(N \) such that \(M \) is cobordant to \(N + P \), proving part (b) of Theorem 2.

Note. \(\ker \partial_2 = \{ \alpha^2 | \alpha \in \ker \partial_1 \} \) is precisely the cobordism classes of squares of oriented manifolds.

REFERENCES

Mathematical Institute, Oxford University