ON POLYNOMIALS CHARACTERIZED BY A CERTAIN MEAN VALUE PROPERTY

LEOPOLD FLATTO

Let \(V \) denote the vector space of continuous real valued functions \(f(x) \) satisfying the mean value property

\[
\frac{1}{N} \sum_{i=1}^{N} f(x + ty_i)
\]

for \(x \in \mathbb{R} \), \(0 < t < \varepsilon_x \) (\(\mathbb{R} \) denotes an \(n \)-dimensional region; \(x \) and \(y_i \) are abbreviations for \((x_1, \ldots, x_n), (y_{i1}, \ldots, y_{in})\)). We assume that the \(y_i \)'s span \(E_n \) so that \(1 \leq n \leq N \). We furthermore assume, without loss of generality, that \(y_1, \ldots, y_n \) are linearly independent.

Friedman and Littman [5] have recently shown that \(V \) consists of polynomials of degrees \(\leq N(N-1)/2 \). This bound is actually attained when the \(y_i \)'s form the \(N \) vertices of an \((N-1)\)-dimensional regular simplex [see 4, p. 264]. On the other hand it is known that for \(n = 2 \), \(\deg f \leq N \) [see 4, Theorem 3.2]. The object of this paper is to obtain bounds on \(\deg V \) and \(\dim V \), the bounds depending on \(N \) and \(n \) \((1 \leq n \leq N)\). We use the term \(\deg V \), to denote the maximum degree of the polynomials contained in \(V \). We also characterize for fixed \(N \) and varying \(n \) \((1 \leq n \leq N)\) those configurations for which \(\deg V \) and \(\dim V \) attain their maximum.

Theorem. We have

\[
\deg V \leq \sum_{j=1}^{n} (N - j), \quad \dim V \leq \prod_{j=0}^{n-1} (N - j)
\]

so that for fixed \(N \) and varying \(n \) \((1 \leq n \leq N)\)

\[
\deg V \leq \frac{N(N-1)}{2}, \quad \dim V \leq N!.
\]

The latter bounds are obtained if and only if

\[
n = N \quad \text{or} \quad n = N - 1 \quad \text{and} \quad \sum_{i=1}^{N} y_i = 0.
\]

Remark. The bounds in (2) are not best possible. For instance, we have stated above that for \(n = 2 \), \(\deg V \leq N \) and this bound is best
possible. For fixed n and N the problem of determining the maximum values of $\deg \vee$, $\dim \vee$ and the configurations for which these maximum values are attained remains open.

Proof. We employ the following notation.

$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n} \right), \quad x \cdot y = x_1y_1 + \cdots + x_ny_n,$$

$$P_k(x) = \sum_{i=1}^{N} (x \cdot y_i)^k \quad (1 \leq k < \infty).$$

It is shown in [5] that (1) is equivalent to the infinite system of homogeneous partial differential equations

$$(4) \quad P_k \left(\frac{\partial}{\partial x} \right) f = 0 \quad (1 \leq k < \infty)$$

and that \vee, which is thus the solution space of (4), is a finite dimensional space consisting of polynomials. Let R denote the ring of polynomials in x_1, \cdots, x_n with real coefficients and let \mathfrak{B} denote the ideal generated by the P_k's $(1 \leq k < \infty)$. R, \mathfrak{B}, and \vee are vector spaces over the reals and it is known that R is the direct sum of \mathfrak{B} and \vee, i.e. $R = \mathfrak{B} \oplus \vee$ [see 2, p. 53]. Thus the vector spaces R/\mathfrak{B} and \vee are isomorphic $(R/\mathfrak{B} \cong \vee)$.

$\deg \vee$ and $\dim \vee$ will thus be determined if we know all the polynomials in \mathfrak{B}. We introduce the new variables $\xi_i = x \cdot y_i$ $(1 \leq i \leq N)$. Since the y_i's $(1 \leq i \leq N)$ are linearly independent we must have

$$\xi_{n+k} = \sum_{i=1}^{n} a_{ki} \xi_i \quad (1 \leq k \leq N-n)$$

for an appropriate choice of real a_{ki}'s. Let R' denote the ring of polynomials in ξ_1, \cdots, ξ_n with real coefficients and let \mathfrak{B}' denote the ideal generated by the η_k's where $\eta_k = \sum_{i=1}^{n} \xi_i^k \quad (1 \leq k \leq \infty)$. We adopt the following notation:

$$\xi = (\xi_1, \cdots, \xi_n), \quad i = (i_1, \cdots, i_n), \quad \xi_i = \xi_1^{i_1} \cdots \xi_n^{i_n}.$$

It is known [see 1, p. 41] that every polynomial $Q(\xi)$ can be expressed as

$$(5) \quad Q(\xi) = \sum' R_i \xi_i,$$

where the summation in \sum' extends over those i's for which $0 \leq i_j \leq N-j \quad (1 \leq j \leq n)$ and R_i is a polynomial in η_1, \cdots, η_N. This representation is unique for $n = N$. Let c_i denote the constant term in R_i and let $S_i = R_i - c_i$. Clearly $S_i \in \mathfrak{B}'$. It follows from (5) that $Q(\xi) = \sum' C_i \xi_i + \sum' S_i \xi_i$ so that
\[Q(\xi) = \sum' c_i \xi^i \pmod{\Psi'}. \]

As there are \(\prod_{j=0}^{N-j-1} (N-j) \) distinct \(\xi' \)'s, (6) shows that \(\dim R'/\Psi' \leq \prod_{j=0}^{N-j-1} (N-j) \). Since \(\sqcap \cong R/\Psi \cong R'/\Psi' \) we have \(\dim \sqcap \leq \prod_{j=0}^{N-j-1} (N-j) \). It follows furthermore from (6) that if \(Q \) is homogeneous and \(\deg Q > \sum_{j=1}^{n} (N-j) \), then \(Q \in \Psi' \). This implies that if \(P(x) \) is homogeneous and \(\deg P > \sum_{j=1}^{n} (N-j) \) then \(P \in \Psi \). Thus \(\deg \sqcap \leq \sum_{j=1}^{n} (N-j) \).

If \(n \leq N-2 \), then we conclude from (2) that \(\deg \sqcap < N(N-1)/2 \), \(\dim \sqcap < N! \). It remains to treat the two cases: (a) \(n = N \), (b) \(n = N-1 \). In case (a) the \(\xi' \)'s form a basis for \(R'/\Psi' \). For suppose that \(\sum' c_i \xi^i = 0 \pmod{\Psi'} \) for some choice of real \(c_i \)'s. Then \(\sum' c_i \xi^i = \sum_{j=1}^{n} T_j(\xi) \eta_j \) where the \(T_j \)'s are polynomials in \(\xi_1, \cdots, \xi_n \). But each \(T_j \) has a representation \((5) \). I.e. \(T_j(\xi) = \sum' R_j(\eta) \xi^i \) where the \(R_j \)'s are polynomials in \(\eta_1, \cdots, \eta_n \). Thus \(\sum' c_i \xi^i = \sum_{j=1}^{n} \sum' R_j(\eta) \xi^i = \sum' (\sum_{j=1}^{n} R_j(\eta_j)) \xi^i \).

Since the representation \((5) \) is unique for \(n = N \) we have

\[c_i = \sum_{j=1}^{n} R_{j,i} \eta_j. \]

The left side of (7) is void of \(\eta \)'s so that all \(R_{j,i} \)'s and \(c_i \)'s equal 0. Thus \(\dim R'/\Psi' = N! \) and since \(\sqcap \cong R/\Psi \cong R'/\Psi' \), \(\dim \sqcap = N! \). Now \(\prod_{j=1}^{N-j-1} (N-j) \) has degree \(N(N-1)/2 \) and \(\in \Psi' \). This implies that there exists a homogeneous polynomial of degree \(N(N-1)/2 \in \Psi' \). Hence \(\deg \sqcap = N(N-1)/2 \).

If \(n = N-1 \) then we distinguish two cases. If \(\sum_{i=1}^{N} y_i \not= 0 \), then it follows from [1, Theorem 2.2] that there exists an orthogonal transformation \(x = Tx' \) such that \(g(x') = f(Tx') \) is independent of \(x_n \) and satisfies the equation

\[g(x') = \frac{1}{N} \sum_{i=1}^{N} g(x_{p,i} + ty_{p,i}), \]

where \(y_i = Ty_i', \ x_{p,i} = (x_1', \cdots, x_{i-1}', x_{i+1}', \cdots, x_n') \), \(y_{p,i} = (y_1', \cdots, y_{i-1}', y_{i+1}', \cdots, y_n') \). Let \(\sqcap' \) denote the solution space of (8). Clearly \(\deg \sqcap = \deg \sqcap' \), \(\dim \sqcap = \dim \sqcap' \). It follows from (2) that \(\deg \sqcap = \deg \sqcap' < N(N-1)/2 \), \(\dim \sqcap = \dim \sqcap' < N! \). If \(\sum_{i=1}^{N} y_i = 0 \), then define

\(\tilde{x} = (x_1, \cdots, x_n, x_{n+1}), \ y_i = (y_{i1}, \cdots, y_{in}, 1) (1 \leq i \leq N) \), \(F(\tilde{x}) = f(x) \).

We notice that \(\sum_{i=1}^{N} \tilde{y}_i \not= 0 \). It therefore follows from [3, Theorem 2.2] that \(\sqcap \) is identical with the solution space \(\sqcap \) of

\[F(\tilde{x}) = \frac{1}{N} \sum_{i=1}^{N} F(\tilde{x} + t\tilde{y}_i). \]
Equation (9) is included in Case (a). It follows that \(\text{deg} \, \nabla = \text{deg} \, \nabla = N(N-1)/2 \), \(\text{dim} \, \nabla = \text{dim} \, \nabla = N! \).

References

Belfer Graduate School of Sciences, Yeshiva University