THE DIFFERENTIAL IDEAL \([uv]\)
KATHLEEN B. O'KEEFE AND EDWARD S. O'KEEFE

1. Introduction. Let \(R\{u, v\} \) be the polynomial ring \(R[u, u_1, u_2, \cdots ; v, v_{l+1} \cdots] \) over \(R \), a field of characteristic zero, with the derivation \(D(y) = y_{i+1} \) for \(y = u \) or \(v \).

Let \(\Omega = [uv] \) be the differential ideal generated by the form \(X = uv_1. \Omega \) has the same elements as the ideal \((uv_1, (uv_1)_1, (uv_1)_2, \cdots) \), where the subscripts again denote derivatives.

A power product in \(R\{u, v\} \) \(P = u_i(v)\cdot u_i(v_2) \cdot \cdots \cdot u_i(m)v_j(v_2) \cdot \cdots \cdot v_j(n) \) is of weight, \(w(P) = \sum_{k=1}^{m} i(K) + \sum_{p=1}^{n} j(P), \) and signature, \(\text{sig}(P) = (m, n) \).

The following fundamental theorem is proved in [3].

Levi's Theorem. If \(P \) is a power product in \(R\{u, v\} \) and \(w(P) < m \cdot n \), then \(P \) is in the ideal \([uv]\).

The purpose of this paper is to show that if \(P \) contains no proper factor which is in \([uv]\), and if \(w(P) \geq mn \), then \(P \) is not in \([uv]\).

2. Derivations and isomorphic images of \(R\{u, v\} \). Computations in \(R\{u, v\} \) are simplified by working in an isomorphic image of \(R\{u, v\} \), \(R\{\bar{u}, \bar{v}\} \). \(R\{\bar{u}, \bar{v}\} \) is the ring \(R[\bar{u}, \bar{u}_1 \cdots , \bar{v}, \bar{v}_1 \cdots] \) with derivation \(\overline{D}(\bar{y}) = \bar{y}_{i+1} \) for \(y = u \) or \(v \). The isomorphism is established by the mapping \(h: u_i \rightarrow \bar{u}_i, v_j \rightarrow \bar{v}_j \). Thus \(\overline{D}(\bar{u}_i) \) corresponds to \(D(u)_i/(i+1) \) and \(\overline{D}(\bar{v}_j) \) to \(D(v)_j/j+1 \). For typographical convenience, the bars will be omitted; hence \(\overline{D}^n(u\bar{v}) \) is written \((uv)_n = \sum_{j=0}^{n} u_jv_{n-j} \).

Definition 2.1. \(D^l \) is defined on \(R[u, u_1, \cdots , v, v_{l+1} \cdots] \) by

1. \(D^l(u_i) = (i + 1)u_{i+1} \) for \(i \geq 0 \).
2. \(D^l(v_j) = \begin{cases} (j - l + 1)v_{j+1} & \text{for } j \geq l, \\ 0 & \text{for } j < l. \end{cases} \)
3. If \(D^l_k \) has been defined, then \(D^l_{k+1} = D^l(D^l_k) \).

Theorem 2.2. Let \(h \) be the (nondifferential) isomorphism of \(R = R[u, u_1, \cdots , v, v_1, \cdots] \) onto \(R_1 = R[u, u_1, \cdots , v, v_{l+1}, \cdots] \) determined by mapping \(u_i \) into \(u_i \) and \(v_j \) into \(v_{j+1} \). Then
\[
(2.1) \quad h(D^0(P)) = D^l(h(P)).
\]

Presented to the Society, April 13, 1965; received by the editors March 5, 1965 and, in revised form, July 28, 1965 and November 15, 1965.

750
Proof. It suffices to show (2.1) for \(P = u_i \) and \(P = v_j \). Suppose that \(i \geq 0 \), then for \(l \geq 0 \), \(h(D^0(u_i)) = h((i + 1)u_{i+1}) = (i + 1)u_{i+1} = D^1(h(u_i)) \); and for \(j \geq l \), \(h(D^0(v_j)) = h((j + 1)v_{j+1}) = (j + 1)v_{j+1} = D^1(v_{j+1}) = D^1(h(v_j)) \).

Corollary 2.3. \(\mathfrak{a}_1 \) is closed under the operation \(D^1 \). Furthermore, the ideal \([uv_1]\), the image of \([uv]\) under the mapping \(h \), is closed under \(D^1 \).

Corollary 2.4. Let \(R\{u, v_1\} \) be the Ritt algebra \((\mathfrak{r}_1, D^1)\), then \(R\{u, v_1\} \) is isomorphic to \(R\{u, v\} \).

Let \((uv)\) be the (algebraic) subring of \(R\{u, v\} \) generated by \(uv \); that is, \((uv)\) is the set of elements of \(R\{u, v\} \) divisible by \(uv \).

Theorem 2.5. There is a module isomorphism \(g \) which maps \(uR\{u, v\}/(uv) \) onto \(R\{u, v_1\} \).

Proof. Let \(I = (uv) \). If \(a \in uR\{u, v\}/(uv) \), then for a unique \(b \) not involving \(v \), \(a = ub + I \). Define \(g \) by \(g(a) = b \). Then \(g(I) = 0 \), \(g(c + I) = c/u \), if \(c \) does not contain \(v \). Clearly if \(r \in R \), \(g(ra) = rg(a) \) and if \(a_1 \) and \(a_2 \) are elements of \(uR\{u, v\}/(uv) \), then \(g(a_1 + a_2) = g(a_1) + g(a_2) \). Furthermore, for every \(c \) in \(R\{u, v_1\} \), \(g^{-1}(c) = uc + I \) and \(g^{-1}(c) \) is an element of \(uR\{u, v\}/(uv) \).

Theorem 2.6. Under \(g \), \(u[uv]/(uv) \) in \(R\{u, v\} \) is mapped isomorphically on \([uv_1]\) in \(R\{u, v_1\} \).

Proof. If \(a \in u[uv]/(uv) \), then \(a = uc + I \), where \(c = \sum_{i=0}^{m} d(i)(uv)_i \) with \(d(i) \in R\{u, v\} \). For \(i > 0 \), \((uv)_i = (uv_1)_{i-1} + u_i v \); hence, \(uc + I = u \sum_{i=0}^{m} d(i)(uv_1)_{i-1} + I \). Thus \(g(a) = c \) and \(c \in [uv_1] \). Further, \(g^{-1}g(a) = a \). If any \(c \) is in \([uv_1] \), then \(g^{-1}(c) = uc + I \), or \(u \sum_{i=0}^{m} d(i)(uv_1)_{i-1} + I \). But then certain elements of \(I \) may be used to fill out the sums because \(ud(i)u_i v \in I \) for every \(i \). Therefore \(u \sum_{i=0}^{m} d(i)(uv_1)_i + I = u \sum_{i=0}^{m+1} d(i-1)(uv)_i + I \), and \(g \) covers all of \([uv_1]\) and is an isomorphism.

Corollary 2.7. If \(Q \equiv 0[uv_1] \), then \(u \cdot Q \equiv 0 \) \([uv]\).

Proof. Using the \(g^{-1} \) of Theorem 2.2, \([uv_1]\) is mapped onto \(u[uv]/(uv) \). Hence \(uQ \equiv 0[uv] \) because \(uQ \subseteq uQ + I = g^{-1}(Q) \).

3. The operator \(T_n \). Let \(P = u_j U V \) be a power product of signature \(\langle k, l \rangle \) and excess weight zero.

Definition 3.1. \(T_n \) operates on \(V \) and is defined by

1. For \(n = 1 \), \(T_1(V) = D^1(V) - D^0(V) \).
2. If \(T_{n-1}(V) \) has been defined, then \(T_n(V) = D^1(T_{n-1}(V)) - T_{n-1}(D^0(V)) \). (Note that \(T_n \) and \(D^1 \) do not commute.)
Theorem 3.2. Let $V = v_{j(1)}v_{j(2)} \cdots v_{j(l)}$, then for $n \leq l$, $T_n(V) = (-1)^n n! \sum v_{j(1)} \cdots v_{t(n)+1} \cdots v_{t(n)+1}$, with the summation extending over all products in which exactly n v-subscripts are raised by 1. (That is, no $j(i)$, $i = 1, \ldots, l$, is raised more than 1.) If $n > l$, $T_n(V) = 0$.

Proof. The proof is by induction on n, keeping l fixed.

For $n = 1$,
\[T_1(V) = D^1(V) - D^0(V) \]
\[= \sum_{m=1}^{l} (j(m))v_{j(1)} \cdots v_{j(m)+1} \cdots v_{j(l)} \]
\[- \sum_{m=1}^{l} (j(m) + 1)v_{j(1)} \cdots v_{j(m)+1} \cdots v_{j(l)} \]
\[= \sum_{m=1}^{l} v_{j(1)} \cdots v_{j(m)+1} \cdots v_{j(l)}. \]

For $n > 1$, assume that the theorem holds for values less than n. Let Z_n be the set of all functions z on $\{1, 2, \ldots, l\}$ to $\{0, 1\}$ with n occurrences of 1. The induction hypothesis may now be written, for $p < n$,
\[T_p(V) = (-1)^p p! \sum_{z \in Z_p} v_{j(1)+z(1)} \cdots v_{j(l)+z(l)}. \]

By definition $T_n(V) = D^1(T_{n-1}(V)) - T_{n-1}(D^0(V))$, and the induction hypothesis may be applied to T_{n-1}. Using the definition of D^0 and D^1, an expression for T_n may be derived as follows.

\[T_n(V) = D^1\left((-1)^{n-1}(n - 1)! \sum_{z \in Z_{n-1}} v_{j(1)+z(1)} \cdots v_{j(l)+z(l)}\right) \]
\[- T_{n-1}\left(\sum_{t=1}^{l} (j(t) + 1)v_{j(1)} \cdots v_{j(t)+1} \cdots v_{j(l)}\right) \]
\[= (-1)^{n-1}(n - 1)! \]
\[\cdot \sum_{z \in Z_{n-1}} \left(\sum_{t=1}^{l} (j(t) + z(t))v_{j(1)+z(1)} \cdots v_{j(t)+z(t)+1} \cdots v_{j(l)+z(l)}\right) \]
\[- \sum_{t=1}^{l} (j(t) + 1)(-1)^{n-1}(n - 1)! \]
\[\cdot \left(\sum_{z \in Z_{n-1}} v_{j(1)+z(1)} \cdots v_{j(t)+1+z(t)} \cdots v_{j(l)+z(l)}\right). \]
These two sums are exactly comparable, the same t's and z's occurring in each. The sign of one term is $+$ and the other $-$; the sum of the coefficients being

$$j(t) + z(t) - (j(t) + 1).$$

The sum coefficient is then -1 for exactly those terms where $z(t) = 0$. It is 0 for the others. For $n \leq l$, then, the terms unify, giving for each a new z, an element of Z_n; and for $n > l$, the terms cancel. In case $n \leq l$, each element of Z_n can be found in n ways from as many elements of Z_{n-1}; hence, the new factor in the coefficient is $-n$. This concludes the proof.

The T-operator will now be applied to an arbitrary power product P of excess weight zero. First of all, if P contains any factor of negative excess weight, then P is in $[uv]$. Therefore, in particular, assume that P does not contain uv.

Theorem 3.3. Let $P = u_1UV$, then $P = uUT_1(V)[uv]$.

Proof. Since P is a power product of excess weight zero, uUV has negative excess weight and is zero modulo $[uv]$ by Levi's Theorem. Mapping R into itself by D^0, $uUV = 0[uv]$ becomes

$$u_1UV + uD^0(U)V + uUD^0(V) \equiv 0 [uv].$$

Consider $Q = UV$ as a power product in R_1. Then $S = Uh^{-1}(V)$ in R has signature $(k-1, l)$ and weight $w = kl - 1 - l < (k-1)l$; hence $S \equiv 0 [uv]$. Under D^0, $S \equiv 0 [uv]$ becomes

$$D^0(U)(h^{-1}(V)) + UD^0(h^{-1}(V)) \equiv 0 [uv].$$

Mapping R into R_1, (3.2) becomes

$$D^0(U)V + UD^1(V) \equiv 0 [uv_1].$$

The derivation of $R\{u, v_1\}, D'$, may be used in $[uv]$ because using the mapping g of Theorem 3.5, $g^{-1}D^1g$ maps $uR\{u, v\}/(uv)$ into itself and $u[uv]/(uv)$ into itself. Hence, by Corollary 2.7,

$$uD^0(U)V + uUD^1(V) \equiv 0 [uv].$$

Substituting (3.4) in (3.1) completes the proof.

Lemma 3.4. Let $P = u_jUV$ and let h map R onto R_1. If $Q = Uh^{-1}(T_{j-1}(V))$, then $Q \equiv 0 [uv]$.

Proof. By Theorem 3.2, $w(T_{j-1}(V^*)) = w(V) + (j-1)$ for each term $T_{j-1}(V^*)$ in $T_{j-1}(V)$. For each term Q^* in Q, $w(Q^*) = w(P) - j$
+(j−1)−l=kl−l−1<(k−1)l; and the signature of Q* is <k−1, l>.
Hence Q*≡0[uv] by Levi’s Theorem.

Theorem 3.5. Let \(P = u_j UV \), then for all \(j > 0 \),

\[
P \equiv \frac{1}{j!} uUT_j(V) [uv].
\]

Proof. The proof is by induction on \(j \), and the case \(j = 1 \) is covered by Theorem 3.3. Assume that (3.5) holds for values less than \(j \). In \(R \), \(u_{j−1} UV \equiv 0 [uv] \) by Levi’s Theorem. Under \(D^0 \), we have

\[(3.6) j u_j UV \equiv (-u_{j−1} D^0(U) V - u_{j−1} U D^0(V)) [uv].\]

Applying the induction hypothesis to each term on the right (3.6) becomes

\[
j u_j UV \equiv \left(-\frac{1}{(j−1)!} u D^0(U) T_{j−1}(V) \right) [uv].
\]

Map \(R \) onto \(R_1 \) by \(k \) and consider \(Q = U T_{j−1}(V) \) as a power product in \(R_1 \). Then \(S = U h^{−1}(T_{j−1}(V)) \) is in \([uv]\) by Lemma 3.4. Under \(D^0 \), \(S \equiv 0[uv] \) becomes

\[(3.8) D^0(U) h^{−1}(T_{j−1}(V)) + U D^0(h^{−1}(T_{j−1}(V))) \equiv 0 [uv].\]

Mapping \(R \) onto \(R_1 \), (3.8) becomes

\[(3.9) D^0(U) T_{j−1}(V) + U D^1(T_{j−1}(V)) \equiv 0 [uv_1].\]

By Corollary 2.7, we get

\[(3.10) u D^0(U) T_{j−1}(V) + u U D^1(T_{j−1}(V)) \equiv 0 [uv].\]

Substituting (3.10) in (3.7) completes the proof.

4. The converse of H. Levi’s Theorem for [uv]. Let \(P = u_{i(1)} u_{i(2)} \ldots \cdot u_{i(k)} v_{j(1)} v_{j(2)} \ldots v_{j(l)} \) be of signature \(<k, l> \) and weight \(w \). Assume that \(P \) has no factor of negative excess weight. By Theorem III of [4], without loss of generality, we may set \(w(P) = kl \). If a sequence of \(k \) transformations exist such that

\[
(1) \ V = v_{j(1)} \ldots v_{j(l)} \ \text{is changed to} \ v'_k,
\]

\[
(2) \ \text{in the} \ t\text{th transformation exactly} \ i(t) \ v\text{-subscripts are increased by one},
\]

\[
(3) \ U = u_{i(1)} \ldots u_{i(k)} \ \text{is changed to} \ u^k;
\]
then P may be written congruent to a linear combination of α-terms of the same weight and signature as P, [3]. P is of excess weight zero and thus $P = cu_k v_k [uv]$. The only question concerns the coefficient c, which is not zero, but is $(-1)^{i_1+i_2+\cdots+i_m}$ where m is the number of sequences which transform V to v_k. Thus $c = 0$ if and only if $m = 0$, and we have proved

Theorem 4.1. If $P = UV$ has a nonnegative weight matrix, then P is not in $[uv]$ if and only if V can be transformed to v_k by a sequence of n steps, in the tth of which exactly $i(t)$ v-subscripts are increased by one.

It remains to characterize those U and V for which (4.1) exists.

At the tth step, suppose a power product M is transformed into a power product N as follows: u_t in M is replaced with u and the lowest t v-subscripts (assuming that $j(1) \leq j(2) \leq \cdots \leq j(t) \leq \cdots \leq j(0)$) are increased by one. Now, if N contains a factor with negative excess weight, then the same is true of M. More generally, we prove

Theorem 4.2. Let M be a power product of signature $\langle k, l \rangle$ containing u_t, $t > 0$ and t v's, $v_{j(1)} \cdots v_{j(t)}$, and let

$$N = M \frac{uv_{j(1)} u_{i(t)} \cdots v_{j(t)} + 1}{u v_{j(1)} \cdots v_{j(t)}}.$$

Then if G is any factor on N with excess weight $e(G)$, there is a factor F of M with excess weight $e(F) \leq e(G)$.

Proof. We may assume G has u as a factor; otherwise, by reducing the subscripts in G that have been raised we get a factor G^* of M with $e(G^*) \leq e(G)$. Therefore G is of the form $u U_1 V$, where U_1 is a factor of U; notationally, let $U_1 = U$. If V involves no unchanged subscripts, then lowering the n subscripts of V that have been raised we get V^* and a factor UV^* of M with $e(UV^*) = w(U) + w(V) - n - (k - 1)n = e(u U V)$. If V involves all the changed subscripts, then similarly $e(u U V^*) = t + w(U) + (W(V) - t) - k \ deg V^* = e(u U V)$. If V involves an unchanged subscript but not all changed ones, we can exchange an unchanged subscript for a changed one except in the case that all the changed subscripts of N are $j(t) + 1$ and all the unchanged subscripts of G are $j(t)$. Thus a reduction is achieved except in the case that G is of the form $u U v_{j(t)} v_{j(t)} v_{j(t)}$, $p < t, q > 0$. Consider the cases (1) $k \geq j(t) + 1$ and (2) $k \leq j(t)$.

In case 1,

$$e(u U v_{j(t)} v_{j(t)} + v_{j(t)}) = e(u U v_{j(t)} v_{j(t)} + v_{j(t)}).$$
In case 2,

\[e(u U^p v_{j(t)} + v_{j(t)}^{q-1}) \leq e(u U^p v_{j(t)} + v_{j(t)}^q). \]

In either case, a factor \(F \) of \(M \) has been found such that \(e(F) \leq e(G) \), and the proof is complete.

Corollary 4.3. If \(P = UV \) has a nonnegative weight matrix and excess weight zero, then \(P \not\equiv 0[uv] \).

Proof. By symmetry we may assume that \(V \not\equiv 0(v) \). By Theorem 4.2, there is a sequence of transformations satisfying (4.1) which transforms \(P \) into the \(\alpha \)-term \(u^k v^l \).

Corollary 4.4. If \(P = u^i v_j \), the smallest exponent \(q \) such that \(P^q \equiv 0[uv] \) is \(q = i + j + 1 \).

Proof. \(Q = (u, v)^{i+j+1} \) has negative excess weight; hence, by Levi's Theorem is in \([uv]\). On the other hand, \(S = (u, v)^{i+j} \) has a nonnegative weight matrix, excess weight zero, and is not in \([uv]\) by Corollary 4.3. This solves Ritt's exponent problem for \([uv]\), ([1], p. 177).

Bibliography

University of Washington and The Boeing Company