A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

C. A. SWANSON

Clark and the author [2] recently obtained a generalization of the Hartman-Wintner comparison theorem [4] for a pair of self-adjoint second order linear elliptic differential equations. The purpose of this note is to extend this generalization to general second order linear elliptic equations. As in [2], the usual pointwise inequalities for the coefficients are replaced by a more general integral inequality. The result is new even in the one-dimensional case, and extends Leighton’s result for self-adjoint ordinary equations [5].

Protter [6] obtained pointwise inequalities in the nonself-adjoint case in two dimensions by the method of Hartman and Wintner [4]. We obtain an alternative to Protter’s result as a corollary of our main theorem.

Let R be a bounded domain in n-dimensional Euclidean space with boundary B having a piecewise continuous unit normal. The linear elliptic differential operator L defined by

$$Lu = \sum_{i,j=1}^{n} D_i(a_{ij}D_ju) + 2\sum_{i=1}^{n} b_iD_iu + cu, \quad a_{ij} = a_{ji}$$

will be considered in R, where D_i denotes partial differentiation with respect to $x^i, i = 1, 2, \cdots, n$. We assume that the coefficients $a_{ij}, b_i,$ and c are real and continuous on \bar{R}, the b_i are differentiable in R, and that the symmetric matrix (a_{ij}) is positive definite in R. A “solution” u of $Lu = 0$ is supposed to be continuous on \bar{R} and have uniformly continuous first partial derivatives in R, and all partial derivatives involved in (1) are supposed to exist, be continuous, and satisfy $Lu = 0$ in R.

Let $Q[z]$ be the quadratic form in $(n+1)$ variables $z_1, z_2, \cdots, z_{n+1}$ defined by

$$Q[z] = \sum_{i,j=1}^{n} a_{ij}z_i z_j - 2z_{n+1} \sum_{i=1}^{n} b_i z_i + g z_{n+1}^2,$$

where the continuous function g is to be determined so that this form is positive semidefinite. The matrix Q associated with $Q[z]$ has the block form

Received by the editors October 21, 1965.

1 This research was supported by the United States Air Force Office of Scientific Research, under grant AF-AFOSR-379-65.
\[
Q = \begin{pmatrix} A & -b \\ -b^T & g \end{pmatrix}, \quad A = (a_{ij}),
\]

where \(b^T\) is the \(n\)-vector \((b_1, b_2, \ldots, b_n)\). Let \(B_i\) denote the cofactor of \(-b_i\) in \(Q\). Since \(A\) is positive definite, a necessary and sufficient condition for \(Q\) to be positive semidefinite is \(\det Q \geq 0\), or

\[
g \det (a_{ij}) \geq - \sum_{i=1}^{n} b_i B_i.
\]

The proof is a slight modification of the well-known proof for positive definite matrices [3, p. 306].

Let \(J\) be the quadratic functional defined by

\[
J[u] = \int_{\mathbb{R}} F[u] \, dx
\]

where

\[
F[u] = \sum_{i,j} a_{ij} D_i u D_j u - 2u \sum_i b_i D_i u + (g - c)u^2,
\]

with domain \(\mathcal{D}\) consisting of all real-valued continuous functions on \(\mathbb{R}\) which have uniformly continuous first partial derivatives in \(\mathbb{R}\) and vanish on \(B\).

Lemma. Suppose \(g\) satisfies (3). If there exists \(u \in \mathcal{D}\) not identically zero such that \(J[u] < 0\), then every solution \(v\) of \(Lv = 0\) vanishes at some point of \(\mathbb{R}\).

Proof. Suppose to the contrary that there exists a solution \(v \neq 0\) in \(\mathbb{R}\). For \(u \in \mathcal{D}\) define

\[
X^i = v D_i (u/v);
\]

\[
Y^i = v^{-1} \sum_j a_{ij} D_j v, \quad i = 1, 2, \ldots, n;
\]

\[
E[u, v] = \sum_{i,j} a_{ij} X^i X^j - 2u \sum_i b_i X^i + gu^2 + \sum_i D_i(u^2 Y^i).
\]

A routine calculation yields the identity

\[
\]

Since \(Lv = 0\) in \(\mathbb{R}\),
\[J[u] = \int_R \left[\sum_{i,j} a_{ij}X^iX^j - 2u \sum_i b_iX^i + gu^2 \right] dx \]

(5)

\[+ \int_R \sum_i D_i(u^2V) \, dx. \]

Since \(u = 0 \) on \(B \), the second integral is zero by Green's formula. The first integrand is a positive semidefinite form by hypothesis (3). The contradiction \(J[u] \geq 0 \) establishes the lemma.

Consider in addition to (1) a second differential operator \(L^* \) of the same form,

\[L^* u = \sum_{i,j=1}^n D_i(a^*_{ij}D_ju) + 2 \sum_i b^*_i D_iu + c^* u, \quad a^*_{ij} = a_{jj} \]

in which the coefficients satisfy the same conditions as the coefficients in (1). \(L^* \) is the Euler-Jacobi operator associated with the quadratic functional \(J^* \) defined by

\[J^*[u] = \int_R \left[\sum_{i,j} a^*_{ij}D_iuD_ju - 2u \sum_i b^*_i D_iu - c^*u^2 \right] dx. \]

(6)

Define \(V[u] = J^*[u] - J[u], \ u \in \Omega \). Since \(u = 0 \) on \(B \), it follows from partial integration that

\[V[u] = \int_R \left[\sum (a^*_{ij} - a_{ij}) D_iuD_ju \right. \]

\[+ \left\{ \sum D_i(b^*_i - b_i) + c - c^* - g \right\} u^2 \] \, dx.

(7)

Theorem 1. Suppose \(g \) satisfies (3). If there exists a nontrivial solution \(u \) of \(L^*u = 0 \) in \(R \) such that \(u = 0 \) on \(B \) and \(V[u] > 0 \), then every solution of \(Lv = 0 \) vanishes at some point of \(\overline{R} \).

Proof. The hypothesis \(V[u] > 0 \) is equivalent to \(J[u] < J^*[u] \). Since \(u = 0 \) on \(B \), it follows from Green's formula that \(J^*[u] = 0 \). Hence the hypothesis \(J[u] < 0 \) of the lemma is fulfilled.

Theorem 2. Suppose \(g \) det \((a_{ij}) > -\sum b_iB_i \). If there exists a nontrivial solution of \(L^*u = 0 \) in \(R \) such that \(u = 0 \) on \(B \) and \(V[u] \geq 0 \), then every solution of \(Lv = 0 \) vanishes at some point of \(\overline{R} \).

Since \(Q \) is positive definite, the lemma is valid when the hypothesis \(J[u] < 0 \) is replaced by \(J[u] \leq 0 \). The proof of Theorem 2 is then analogous to that of Theorem 1.
In the case that equality holds in (3), that is

\[g = - \sum_i b_i B_i / \det (a_{ij}), \]

define

\[\delta = \sum D_i (b_i^* - b_i) + c - c^* - g. \]

\(L \) is called a "strict Sturmian majorant" of \(L^* \) by Hartman and Wintner [4] when the following conditions hold: (i) \((a_i^* - a_{ij}) \) is positive semidefinite and \(\delta \geq 0 \) in \(R \); (ii) either \(\delta > 0 \) at some point or \((a_i^* - a_{ij}) \) is positive definite and \(c^* \neq 0 \) at some point. The corollary below follows immediately from Theorem 1.

Corollary. Suppose that \(L \) is a strict Sturmian majorant of \(L^* \). If there exists a solution \(u \) of \(L^* u = 0 \) in \(R \) such that \(u = 0 \) on \(B \) and \(u \) does not vanish in any open set contained in \(R \), then every solution of \(L v = 0 \) vanishes at some point of \(R \).

If the coefficients \(a_{ij}^* \) are of class \(C^{2,1}(R) \) (i.e. all second derivatives exist and are Lipschitzian), the hypothesis that \(u \) does not vanish in any open set of \(R \) can be replaced by the condition that \(u \) does not vanish identically in \(R \) because of Aronszajn's unique continuation theorem [1].

In the case \(n = 2 \) considered by Protter [6], the condition \(\delta \geq 0 \) reduces to

\[(a_{11}a_{22} - a_{12}^2) \left(\sum_{i=1}^2 D_i (b_i^* - b_i) + c - c^* \right) \]

\[\geq a_{11}b_2^2 - 2a_{12}b_1b_2 + a_{22}b_1^2, \]

which is considerably simpler than Protter's condition. It reduces to Protter's condition

\[\sum_{i=1}^2 D_i b_i^* + c - c^* \geq 0 \]

in the case that \(b_1 = b_2 = 0 \), and also in the case that \(a_{12} = a_{12}^* = 0, a_{11} = a_{11}^*, a_{22} = a_{22}^* \). (Two incorrect signs appear in [6]).

The following example in the case \(n = 2 \) illustrates that Theorem 1 is more general than the pointwise condition (9). Let \(R \) be the square \(0 < x^1, x^2 < \pi \). Let \(L^*, L \) be the elliptic operators defined by
\[L^*u = D_1^2u + D_2^2u + 2u, \]
\[L_v = D_1^2v + D_2^2v + D_1v + cv, \]
where
\[c(x^1, x^2) = f(x^1)f(x^2) + 5/4, \]
and \(f \in C[0, \pi] \) is not identically zero. The function \(u = \sin x^1 \sin x^2 \) is zero on \(B \) and satisfies \(L^*u = 0 \). The condition \(V[u] > 0 \) of Theorem 1 reduces to
\[\int_0^\pi \int_0^\pi f(x^1)f(x^2) \sin^2 x^1 \sin^2 x^2 dx^1 dx^2 > 0. \]
Since this is fulfilled, every solution of \(L_v = 0 \) vanishes at some point of \(\overline{R} \). This cannot be concluded from (9) or from Protter's result [6] unless \(f \) has constant sign in \(R \).

In the case \(n = 1 \), \(L \) is an ordinary differential operator of the form
\[Lu = (au')' + 2bu' + cu, \]
and \(R \) is an interval \((x_1, x_2)\). We assert that \(\overline{R} \) can be replaced by \(R \) in the lemma and theorems; for \(v \) can have at most a simple zero at the boundary points \(x_1 \) and \(x_2 \), and hence the first integral on the right side of (5) exists and is nonnegative provided only that \(v \neq 0 \) in \(R \).

Theorem 3. If there exists a nontrivial solution \(u \) of \(L^*u = 0 \) in \(R \) such that \(u = 0 \) on \(B \) and
\[\int_{x_1}^{x_2} \left[(a^* - a)u'^2 + \left(b^* - b' + c - c^* - \frac{b^{2^2}}{a} \right) u^2 \right] dx > 0, \]
then every solution of \(L_v = 0 \) has a zero in \((x_1, x_2)\).

In the self-adjoint case \(b = b^* = 0 \) it was shown by Clark and the author [2] that the strict inequality in the hypothesis \(V[u] > 0 \) of Theorem 1, and therefore also in (10), can be replaced by \(\geq \). Indeed, this is transparent when the proof of the above lemma is specialized to the self-adjoint case. With \(> \) replaced by \(\geq \), (10) reduces to Leighton's condition in the self-adjoint case [5].

References

THE UNIVERSITY OF BRITISH COLUMBIA

q-ANALOGUES OF CAUCHY'S FORMULAS

WALEED A. AL-SALAM

1. Let q be a given number and let α be real or complex. The αth "basic number" is defined by means of $[\alpha] = (1-q^\alpha)/(1-q)$. This has served as a basis for an extensive amount of literature in mathematics under such titles as Heine, basic, or q-series and functions. The basic numbers also occur naturally in many theta identities. The works of Jackson (for bibliography see [2]) and Hahn [3] have stimulated much interest in this field.

One important operation that is intimately connected with basic series as well as with difference and other functional equations is the q-derivative of a function f. This is defined by

\begin{equation}
Df(x) = \frac{f(qx) - f(x)}{x(q - 1)}.
\end{equation}

Jackson defined the operations, which he called q-integration,

\begin{equation}
\int_0^x f(t)\,d(q, t) = x(1 - q) \sum_{k=0}^{\infty} q^k f(xq^k)
\end{equation}

and

\begin{equation}
\int_x^\infty f(t)\,d(q, t) = x(1 - q) \sum_{k=0}^{\infty} q^{-k} f(xq^{-k})
\end{equation}

Received by the editors October 28, 1965 and, in revised form, November 30, 1965.