ON SPLITTING FIELDS FOR CERTAIN LIE ALGEBRAS OF PRIME CHARACTERISTIC

RICHARD T. BARNES

1. Let F be a field of prime characteristic different from 2 or 3 and L a Lie algebra over F with an abelian Cartan subalgebra H. For α in H^* (the dual space of H) set $L_{\alpha} = \{ x \in L | [xh] = \alpha(h)x, \text{ for all } h \text{ in } H \}$, and as usual, if $L_{\alpha} \neq (0)$, α is called a root with respect to H and L_{α} the root space for α. We have $L_0 = H$ and $[L_{\alpha}L_{\beta}] \subseteq L_{\alpha + \beta}$. Seligman and Mills in [1] have called L a Lie algebra of classical type if L contains an abelian Cartan subalgebra H and if H and L satisfy:

(i) $[LL] = L$.
(ii) L has center (0).
(iii) L is a direct sum of subspaces L_{α}.
(iv) If α is a nonzero root, then $[L_{\alpha}L_{-\alpha}]$ is one-dimensional.
(v) If α is a nonzero root and $\beta \in H^*$, then there is a positive integer m such that $\beta + ma$ is not a root.

Let L be a Lie algebra over F such that L_K is of classical type, where K is the algebraic closure of F. An extension field P of F is called a splitting field for L provided L_P is of classical type. We can now state the main theorem of this paper as:

Theorem 1.1. Every semisimple Lie algebra over F with nondegenerate Killing form $(x, y) = \text{tr}(\text{ad}x)(\text{ad}y)$ has a separable splitting field.

Note that if F is finite and L has nondegenerate Killing form then every finite extension is separable, in particular one that splits L. Therefore, we may assume, in what follows, that F is infinite.

2. **Lemma 2.1.** If L is semisimple with nondegenerate Killing form, then L contains a regular element x such that the minimum polynomial of $\text{ad}(x)$ has the form:

$$
\mu(\lambda) = \lambda \prod_{\alpha} (\lambda - \alpha(x))
$$

where the $\alpha(x)$ are distinct and different from zero in some extension P of F.

Proof. Recall that an element x in L is regular provided the 0-space of $\text{ad}(x)$ has minimal dimension. If x is regular in L and P is

Received by the editors May 7, 1965.

1 This work is part of the author’s doctoral dissertation prepared under the direction of Professor George Seligman at Yale University.

930
an extension of F then x is regular in L_P. To see this, let (u_1, u_2, \ldots, u_n) be a basis for L and (X_1, X_2, \ldots, X_n) be algebraically independent indeterminants. Let $F'=F(X_1, \ldots, X_n)$. Then $X = \sum X_i u_i$ is in $L_{P'}$, and the characteristic polynomial of $\text{ad}(X)$ is given by:

$$\det(\lambda I - \text{ad}(X)) = \sum_{i=0}^{n} M_i(X) \lambda^i,$$

where $M_i(X) \in F[X_1, \ldots, X_n]$. If $x = \sum_{i=1}^{n} \xi_i u_i$, then $M_i(\xi) = 0$ for $i < r$, where r is the dimension of the zero space of $\text{ad}(x)$, and $M_r(\xi) \neq 0$. Also, since x is regular, $M_i(\eta_1, \eta_2, \ldots, \eta_n) = 0$ for $i < r$ and all η_i in F. Thus, since F is infinite, $M_i(X)$ is zero for $0 \leq i < r$ and

$$\det(\lambda I - \text{ad}(X)) = \sum_{r} M_i(X) \lambda^i.$$

Now let $y = \sum \mu_i u_j$, μ_j in P, i.e. y in L_P. Then $M_i(\mu) = 0$ for $0 \leq i < r$, so that the zero space of $\text{ad}(y)$ in L_P has dimension greater than or equal to r. Therefore x is regular in L_P as claimed. As in the above, for generic element X in $L_{P'}$, we have:

$$\det(\lambda I - \text{ad}(X)) = \lambda^r (M_r(X) + M_{r+1}(X) \lambda + \cdots + M_n(X) \lambda^{n-r}),$$

where $M_r(X) \neq 0$. Consider $g(X, \lambda)$, where:

$$g(X, \lambda) = M_r(X) + M_r(X) \lambda + \cdots + M_n(X) \lambda^{n-r}.$$

Then $g(X, \lambda) \in F[X_1, \ldots, X_n, \lambda] \subset F(X_1, \ldots, X_n)[\lambda] = F'[\lambda]$, and thus g has a discriminant given by:

$$D(X_1, \ldots, X_n) = \left(\prod_{i<j} (\rho_i - \rho_j) \right)^2,$$

where $\rho_1, \rho_2, \ldots, \rho_{n-r}$ are all roots of $g(X, \lambda)$ as a polynomial in λ in some splitting field over F', multiple ones taken as many times as their multiplicity. Now, $D(X_1, \ldots, X_n)$ is a symmetric function of the roots and therefore is in the ring generated by the elementary functions of the roots, i.e. the ring generated by $M_r(X), M_{r+1}(X), \ldots, M_{r-r}(X)$. Thus, there exists a polynomial $Q(y_r, y_{r+1}, \ldots, y_n)$ with integral coefficients such that

$$Q(M_r(X), \ldots, M_n(X)) = 0$$

if and only if $g(X, \lambda)$ has repeated roots in its splitting field. Consider $g(X) = M_r(X) Q(M_r(X), \ldots, M_n(X))$. Then $g(X) \in F[X_1, \ldots, X_n]$ and if $g(X) \neq 0$ there exist elements ξ_1, \ldots, ξ_n in F such that $g(\xi_1, \ldots, \xi_n) \neq 0$. Suppose such an n-tuple exists and set $x = \sum \xi_i u_i$, \ldots
Then $\text{ad}(x)$ has characteristic polynomial

$$
\det(\lambda I - \text{ad}(x)) = \lambda^r (M_r(\xi) + M_{r+1}(\xi)\lambda + \cdots + \lambda^{n-r}).
$$

$M_r(\xi) \neq 0$ and $M_r(\xi) + M_{r+1}(\xi)\lambda + \cdots + M_n(\xi)\lambda^{n-r}$ has distinct roots in a splitting field. Thus x is regular and the minimum polynomial of $\text{ad}(x)$ has the form:

$$
\mu(\lambda) = \lambda \prod_{\alpha} (\lambda - \alpha(x)),
$$

where $\alpha(x)$ are distinct and different from zero. It remains to show that $g(X) \neq 0$. For this, let H be a standard Cartan subalgebra in L_K and $h_0 \in H$ be such that $\alpha(h_0)$ are distinct and nonzero for all roots α relative to H. If $h_0 = \sum \omega_iu_i$, $\omega_i \in K$, then $g(\omega_1, \cdots, \omega_n)$ is not zero, so that $g(X_1, \cdots, X_n) \neq 0$, as desired.

3. Proof of Theorem 1.1. Let L be a semisimple Lie algebra over F of dimension n, with nondegenerate Killing form, and x a regular element, where the dimension of the zero-space of $\text{ad}(x)$ is r and where the minimum polynomial of $\text{ad}(x)$ has the form:

$$
\mu_x(\lambda) = \lambda \prod_{\alpha} (\lambda - \alpha(x)), \quad \alpha(x) \in F,
$$

with all $\alpha(x)$ distinct, different from zero, and $n - r$ in number. We will show that L is of classical type. Note that (ii) is satisfied by our hypotheses. Let H be the zero space of $\text{ad}(x)$. Then H is the Cartan subalgebra of L which will play the role of satisfying the remaining axioms, and H has dimension r. Since all $\alpha(x)$ are distinct and characteristic roots of $\text{ad}(x)$, the subspaces $L_{\alpha(x)}$ corresponding to $\alpha(x)$ have dimension one. Then we have

$$
L = H + \sum_{\alpha} L_{\alpha}.
$$

Now for $h \in H$, $[hx] = 0$ and if $y \in L_{\alpha}$, $[[yh]x] = [[yx]h] = \alpha(x)[yh]$. Thus $[yh] \in L_{\alpha}$, i.e. $[L_{\alpha}H] \subseteq L_{\alpha}$ for $\alpha(x) \neq 0$. Since L_{α} is one dimensional this means that for $e_{\alpha} \in L_{\alpha}$ and $h \in H$, $[e_{\alpha}h] = \lambda(h)e_{\alpha}$. Set $\alpha(h) = \lambda(h)$. Thus the characteristic roots of $\text{ad}(h)$ are in the ground field and L_{α} is a root space relative to H. Furthermore, the restriction to H of the Killing form on L is nondegenerate. To see this, let $h \in H$, $e_{\alpha} \in L_{\alpha}$, for $\alpha \neq 0$. Then $[e_{\alpha}h] = \alpha(h)e_{\alpha}$ and we can choose $e_{\alpha}^{(1)} \in L_{\alpha}$ such that $[e_{\alpha}^{(1)}h] = e_{\alpha}$. Then $(h, e_{\alpha}) = (h, [e_{\alpha}^{(1)}h]) = ([hk], e_{\alpha}^{(1)}) = 0$. Thus $(H, L_{\alpha}) = 0$ for all $\alpha \neq 0$ and the form must be nondegenerate on H. It follows that H is abelian. In the case where F is algebraically closed
this is a result due to Zassenhaus. In the general case a field extension argument gives the result. This, together with (2) now shows that axiom (iii) holds.

Thus we have that \(L \) contains an abelian Cartan subalgebra \(H \), and that relative to a fixed basis for \(L \), \(\text{ad}(h) \) has a diagonal matrix for every \(h \in H \). Next we note that if \(\alpha \) is a root different from zero, then so is \(-\alpha \). For, let \(e_\alpha \in L_\alpha, e_\beta \in L_\beta \). Then, for some \(h \in H, e_\alpha = [e_\alpha h] \), and \((e_\beta, e_\alpha) = (e_\beta, [e_\alpha h]) = ([e_\beta e_\alpha], h) = 0 \), unless \(\beta = -\alpha \), since \([e_\beta e_\alpha] \in L_{\alpha+\beta} \). If \(L_{-\alpha} = (0) \) we have \((L, e_\alpha) = 0\), a contradiction.

The nondegeneracy of the form \((x, y)\) on \(H \) implies that for each \(\alpha \in H^* \) there exists an \(h_\alpha \in H \) such that \((h_\alpha, h) = \alpha(h)\), for all \(h \in H \).

In what follows we shall have occasion to refer to results in Seligman's Memoir [2] which we shall denote by \(M \).

Lemma 3.1 (\(M, \text{Corollary 3.2} \)). If \(e_\alpha \in L_\alpha, e_-\alpha \in L_-\alpha \), then \([e_-\alpha e_\alpha]\) = \((e_-\alpha, e_\alpha)h\).

Since \(L \) has nondegenerate form, every derivation of \(L \) is inner [3]. Thus, for \(x \in L, \text{ad}(x)p \) is a derivation in \(L \) and there exists a unique \(y \in L \) such that \(\text{ad}(x)p = \text{ad}(y) \). Setting \(x_p = y \), \(L \) becomes a restricted Lie algebra over \(F \) and the adjoint mapping is a restricted representation of \(L \).

We turn now to a modification of two results due to Jacobson dealing with low-dimensional Lie algebras and their representations (\(M, \text{Lemma 4.1 and 4.2} \)). The modification involves replacing algebraic closure of the ground field with the fact that for the representation \(U \) we have \(U(h) \) is diagonalizable for all \(h \in H \).

Lemma 3.2. Let \(L \) be a two-dimensional Lie algebra over \(F \) with basis elements \(e, h, \) and \([eh] = e \). Let \(U \) be an irreducible representation of \(L \) such that \(U(h) \) and \(U(e)p \) are diagonalizable. Then either \(U(e)p = 0 \) or \(U \) is equivalent to the \(p \)-dimensional representation \(W \):

\[
W(e) = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{pmatrix}, \quad W(h) = \begin{pmatrix}
\lambda & 0 \\
\lambda + 1 & \ddots \\
& & \ddots & 0 \\
& & & \lambda + p - 1
\end{pmatrix}.
\]

Proof. Suppose \(U(e)p = U(e)p \neq 0 \). Then, since \(U(e)p \) and \(U(h)p \) - \(U(h) \) are diagonalizable by our assumptions, these matrices are scalar. For, if \(V_1 = \{ v \mid vU(e)p = \lambda v \} \), and \(V_2 = \{ v \mid v(U(h)p - U(h)) = \mu v \} \), then these are invariant subspaces of the representation space \(V \) and since one of them is not zero for some \(\lambda \) by diagonalizability one must be the whole space. Thus in each case, \(U(e)p = \sigma I, \sigma \in F \),
and \(U(h)^p - U(h) = \rho I, \rho \subseteq F \). Now, let \(\lambda \) be a characteristic root of \(U(h) \) and \(v \neq 0 \) such that \(vU(h) = \lambda v \). Then \(vU(e)^p = \sigma v \), and the space spanned by \(\{ v, vU(e), \ldots, vU(e)^{p-1} \} \) is an invariant subspace of dimension \(p \), thus the whole space \(V \). To see the invariance, we note:

\[
(3) \quad vU(e)^kU(h) = (\lambda + k)vU(e)^k, \quad 0 \leq k \leq p - 1.
\]

Now, relative to this basis for \(V \), the matrices of \(U(h) \) and \(U(e) \) have the form of the lemma.

Lemma 3.3. Let \(L \) be a three-dimensional Lie algebra over \(F \) with basis \(e, f, h \) and let \([ef] = h, [fh] = 0 = [eh]\). Let \(U \) be a nonzero irreducible representation of \(L \) such that \(U(e)^p = 0 \) and \(U(f)^p = 0 \) and \(U(h) \) is diagonalizable. Then \(\text{tr}(u(e)U(f)) = 0 \).

Proof. Since \(U(h) \) is diagonalizable and centralizes the representation we have \(U(h) = \lambda I \). If \(\lambda = 0 \), then \(U(e)U(f) = U(f)U(e) \). Since both \(U(e) \) and \(U(f) \) are nilpotent, so is \(U(e)U(f) \), and thus \(\text{tr}(U(e)U(f)) = 0 \). Suppose now that \(\lambda \neq 0 \) and let \(v \neq 0 \) be an element of the representation space \(V \) such that \(vU(f) = 0 \). Such a \(v \) exists since \(U(f) \) is nilpotent. Now, let \(K \) be the space spanned by \(\{ v, vU(e), \ldots, vU(e)^{p-1} \} \). Then \(KU(e) \subseteq K \) and \(KU(h) \subseteq K \). Furthermore, we have:

\[
(4) \quad vU(e)^kU(f) = vU(e)^kU(f)U(e) + vU(e)^{k-1}U(h).
\]

Actually, by induction we have:

\[
(5) \quad vU(e)^kU(f) = k\lambda(vU(e)^{k-1}), \quad k \geq 1.
\]

Thus, \(K = V \), the whole space, and thus \(\{ v, vU(e), \ldots, vU(e)^{p-1} \} \) is a basis for \(V \). The matrices relative to this basis are:

\[
U(e) = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}, \quad U(f) = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
\lambda & 0 & 0 & \cdots & 0 \\
0 & 2\lambda & \cdots & 0 \\
0 & 0 & \cdots & (p-1)\lambda & 0
\end{bmatrix}
\]

and thus \(\text{tr}(U(e)U(f)) = 0 \) as claimed.

Using these lemmas together with our diagonalizability condition we can now prove the following analogues of the required theorems in \(M \).

Theorem 3.1 (M, Theorem 4.1). If \(\alpha \neq 0 \) is a root then \(e^\alpha_\alpha = 0 \).

Proof. For \(h \in H, [he^\alpha_\alpha] = 0 \), thus \(e^\alpha_\alpha \subseteq H \). Choose \(h \) such that \(\alpha(h) = 1 \). Then \(\{ e_\alpha, h \} \) forms a two-dimensional Lie algebra \(L_1 \) as in Lemma 3.2. For the representation \(U(x) \) take \(\text{ad}_L(x) \). Then, the restriction of \(U \) to \(L_1 \) can be written in the form:
Furthermore, since \(\text{ad}_L(h) \) are diagonal for \(h \in H \), the same holds for \(\text{ad}_L(h) \) restricted to \(M \), \(M \) an irreducible \(L_1 \) submodule of \(L \), and for the transformations induced by \(\text{ad}_L(h) \) in \(L/M \). Continuing this argument on \(L/M \) we see that \(U_i(h) \) is a diagonal matrix relative to a suitable basis for each \(h \in H \).

Now \((ea, h) = \text{tr}(U(ea)^p U(h)) \) and either \(U_i(ea)^p = 0 \) or \(U_i(ea) \) has the form of Lemma 3.2. In any case, \(\text{tr}(U_i(ea)^p U_i(h)) \) is zero so that \((ea, h) = 0 \). This holds whenever \(\alpha(h) \neq 0 \). If \(\alpha(h) = 0 \), let \(h_1 \in H \) be chosen such that \(\alpha(h_1) \neq 0 \). Then \(\alpha(h+h_1) \neq 0 \) and \((ea, h_1) = (e_a^p, h_1) = 0 \). Thus, \((ea, H) = 0 \), which gives \(e_a^p = 0 \).

Theorem 3.2 (M, Theorem 4.2). If \(\alpha \neq 0 \) is a root, then \(\alpha(h_a) \neq 0 \).

Proof. Suppose \(\alpha(h_a) = 0 \) and \(e_a \neq 0 \), \(e_a \in L_\alpha, e_{-a} \neq 0, e_{-a} \in L_{-a} \) such that \((e_a, e_{-a}) = 1 \). By Lemma 3.1 \([e_{-a}e_a] = h_a \). Let \(L_1 \) be the algebra spanned by \(\{e_a, e_{-a}, h_a\} \). For the irreducible constituent \(U_i \) of the restriction of \(U = \text{ad}_L \) to \(L_1 \) we have \(U_i(e_a)^p = 0 \) and \(U_i(e_{-a})^p = 0 \). Thus by Lemma 3.3 we obtain \(\text{tr}(U_i(e_{-a}) U_i(e_a)) = 0 \). Therefore, \(\text{tr}(U(e_{-a}) U(e_a)) = 0 \), i.e. \((e_{-a}, e_a) = 0 \), a contradiction.

Now, by Lemma 3.1 and Theorem 3.2 we have \([L_\alpha L_{-\alpha}]\) is one dimensional, giving us axiom (iv). Theorems 3.1 and 3.2 make it possible now to use the results of §5 of M. (For a complete proof of M, Lemma 5.1 see [1].) In particular, axiom (v) for our algebras is a consequence of Theorems 5.2 and 5.4 in M.

Finally, for axiom (i), we note that \([LL]_K = [L_K L_K] = L_K\), \(K \) the algebraic closure of \(F \). Hence we have:

\[
\dim_F [LL] = \dim_K [LL]_K = \dim_K L_K = \dim_F L.
\]

Therefore, \([LL] = L\). Thus, our algebra \(L \) is of classical type and this together with Lemma 2.1 proves Theorem 1.1.

Bibliography

The Ohio State University

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use