The main result of this paper is a generalization of a theorem of R. S. Phillips [6] on the nonexistence of projections of l^∞ onto c_0. If S is a locally compact Hausdorff space then let $C(S)$ denote the space of bounded continuous real (or complex) valued functions on S; also, let $C_0(S)$ be those functions in $C(S)$ which vanish at infinity. If N is the space of positive integers with the discrete topology then $l^\infty = C(N)$ and $c_0 = C_0(N)$. Thus, Phillips' theorem says that in the case where $S = N$ there is no bounded projection of $C(S)$ onto $C_0(S)$; that is, the space N does not have the projection property.

It is natural to ask for a characterization of spaces with the projection property in terms of their topology. Unfortunately, we cannot achieve this but we do show in Theorem 2 that pseudocompactness is a necessary condition for this property (S is pseudocompact if and only if every real valued continuous function on S is bounded). However, as Example 3 demonstrates, pseudocompactness is not sufficient.

As a corollary to Theorem 2 we obtain a result of W. W. Comfort [1]. Namely, if S is completely regular and there is a retraction of its Stone-Čech compactification βS onto $\beta S \setminus S$ then S is a locally compact pseudocompact space. To establish his result Comfort appealed to a result of W. Rudin which depends on the continuum hypothesis. Hence, not only do we give a relatively simple proof of Comfort's theorem, but furthermore, we do so without using the continuum hypothesis.

Before proceeding to the main theorem we will need the following theorem of I. Glicksberg [3]. The proof is not difficult and we shall not repeat it here.

Theorem 1. A completely regular Hausdorff space S is pseudocompact if and only if for every sequence $\{V_n\}$ of nonvoid open sets with pairwise disjoint closures there is an $s_0 \in S$ such that for every integer n_0 and every open neighborhood V_0 of s_0 there is an $n > n_0$ with $V_0 \cap V_n \neq \emptyset$.

We can now prove our main theorem.

Theorem 2. Let S be a locally compact Hausdorff space; if there is a bounded projection of $C(S)$ onto $C_0(S)$ then S is pseudocompact.
Proof. Let $P : C(S) \to C_0(S)$ be the hypothesized projection and suppose S is not pseudocompact. By Theorem 1 we can find a sequence $\{V_n\}$ of nonvoid open sets with pairwise disjoint closures such that $\{V_n\}$ has no cluster points; i.e., $\bigcup_{n=1}^{\infty} V_n$ is closed.

For every integer $n \geq 1$ let $s_n \in V_n$ and choose a neighborhood U_n of s_n such that U_n is compact and contained in V_n. Using Urysohn's lemma we may find a function ϕ_n in $C(S)$ with $0 \leq \phi_n \leq 1$, $\phi_n(s_n) = 1$, and $\phi_n(s) = 0$ for $s \in U_n$. Let $F = \bigcup_{n=1}^{\infty} U_n$; then $s \in F^c \subseteq \bigcup_{n=1}^{\infty} V_n^c$ implies that $s \in V_n^c$ for a unique n. It easily follows that $s \in U_n^c$, and so F is closed.

If $\xi = \{x^{(n)}\}_{n=1}^{\infty} \in l^\infty$ then we define

$$f_\xi(s) = \sum_{n=1}^{\infty} x^{(n)} \phi_n(s)$$

for all $s \in S$. Since the sets $\{V_n\}$ are pairwise disjoint and each ϕ_n vanishes off V_n^c, we have that at most one term in the sum is not zero and so f_ξ is well defined. For this same reason and because each ϕ_n achieves its supremum, $\|f_\xi\|_\infty = \|\xi\|_\infty$. To see that f_ξ is continuous let $\{s_i\}$ be a net in S which converges to a point $s \in S$. If $s \in F$ then $\{s_i\}$ is eventually outside of F because F is closed. Hence, there is an i_0 such that for $i \geq i_0$, $f_\xi(s_i) = f_\xi(s) = 0$ and so $\{f_\xi(s_i)\}$ converges to $f_\xi(s)$. If $s \in F$ then $s \in U_n^c \subseteq V_n$ for a unique integer n. Thus, there is an i_0 such that for $i \geq i_0$, $s_i \in V_n$. But $s_i \in V_n$ implies $f_\xi(s_i) = x^{(n)} \phi_n(s_i)$ and so $\{f_\xi(s_i)\}$ converges to $f_\xi(s)$. Therefore $f_\xi \in C(S)$.

Define the linear transformation $T_1 : l^\infty \to C(S)$ by $T_1 \xi = f_\xi$; then T_1 is an isometry. Furthermore, if $\xi \in C_0$ then $T_1 \xi \in C_0(S)$.

If $\phi \in C_0(S)$ and $\varepsilon > 0$ then $K = \{s : |\phi(s)| \geq \varepsilon\}$ is compact, and so $K \cap U_n^c \neq \emptyset$ for at most a finite number of U_n. Let n_0 be such that for $n \geq n_0$, $K \cap U_n^c \neq \emptyset$. Thus, if $n \geq n_0$, $|\phi(s_n)| < \varepsilon$; i.e., $\{\phi(s_n)\}_{n=1}^{\infty}$ is in C_0. Define $T_2 : C_0(S) \to C_0$ by $T_2 \phi = \{\phi(s_n)\}$; then T_2 is linear and bounded.

From these facts we have that $\pi : l^\infty \to C_0$ defined by $\pi = T_2 \circ P \circ T_1$ is a bounded linear transformation. But $\xi \in C_0$ implies $T_1 \xi \in C_0(S)$ and, since P is a projection onto $C_0(S)$, we have $P(T_1 \xi) = T_1 \xi$. Moreover, since $\phi_n(s_n) = 1$ for all n, we have that $\pi \xi = T_2(T_1 \xi) = \xi$ and π is a projection of l^∞ onto C_0. This contradicts the result of Phillips and so S must be pseudocompact. This completes the proof.

To prove Comfort's theorem we will need the following easy lemma.

Lemma. Let X be a compact Hausdorff space and S an open subset of X; if $f \in C(X)$ then let f_S be the restriction of f to S. Then the mapping which takes each f into f_S defines an isometric isomorphism between
Corollary (Comfort). If S is a completely regular Hausdorff space and there is a retraction r of βS onto $\beta S \setminus S$ then S is locally compact pseudocompact.

Proof. Since $\beta S \setminus S = r(\beta S)$ we have that S is open in βS and hence locally compact. Define $P_1: C(\beta S) \to C(\beta S)$ by $P_1^2f = f \circ r$; then P_1 is a bounded linear transformation. Also $P_1^2f = P_1(f \circ r) = (f \circ r) \circ r = f \circ r = P_1f$ so that P_1 is a projection. Finally, $P_1f = 0$ if and only if $f(\beta S \setminus S) = 0$. By the lemma we have that $P_1f = 0$ if and only if the restriction of f to S belongs to $C_0(S)$. Hence, if $i: C(S) \to C(\beta S)$ is the map which takes each function in $C(S)$ onto its unique extension to βS, then $P = i^{-1} \circ P_1 \circ i$ is a projection on $C(S)$ with $C_0(S)$ as kernel. Therefore $I - P$ is a projection of $C(S)$ onto $C_0(S)$ and, by Theorem 2, S must be pseudocompact. This completes the proof.

We say that S has the retraction property if and only if there is a retraction of βS onto $\beta S \setminus S$. Thus, by the preceding corollary, the retraction property implies the projection property, which in turn implies pseudocompactness. That the reverse implications are false will be illustrated by some examples. Moreover, the projection property is preserved by taking finite Cartesian products while the retraction property is not [1].

Theorem 3. If S_1 and S_2 are locally compact spaces which have the projection property then so does $S_1 \times S_2$.

Proof. By Theorem 2, S_1 and S_2 are pseudocompact; since they are also locally compact, it follows from a result of Glicksberg [4] that $S_1 \times S_2$ is pseudocompact and $\beta(S_1 \times S_2) = \beta S_1 \times \beta S_2$. If $P_i: C(\beta S_i) \to C(\beta S_i)$ is a projection with image $C_0(S_i)$, $i = 1$, 2 (for notational reasons we will identify $C_0(S_i)$ with the space of functions in $C(\beta S_i)$ which vanish on $\beta S_i \setminus S_i$), then define

$$P_1 \otimes P_2: C(\beta S_1) \otimes C(\beta S_2) \to C(\beta S_1 \times \beta S_2)$$

by

$$P_1 \otimes P_2 \left(\sum_{i=1}^{n} f_i \otimes g_i \right) = \sum_{i=1}^{n} (P_1f_i)(P_2g_i)$$

where $f_i \in C(\beta S_1)$, $g_i \in C(\beta S_2)$ for $1 \leq i \leq n$. Then $P_1 \otimes P_2$ is a well-defined linear map; furthermore $P_1 \otimes P_2$ is continuous if $C(\beta S_i) \otimes C(\beta S_2)$ has its bi-equicontinuous topology (which is here a norm topology) and $C(\beta S_1 \times \beta S_2)$ has its supremum norm (see [5, pp. 89–93] for
most of the results needed here). But \(C(\beta S_1 \times \beta S_2) = C(\beta S_1) \otimes \lambda C(\beta S_2) \),
the completion of \(C(\beta S_1) \otimes C(\beta S_2) \) in the bi-equicontinuous norm.
Therefore \(P_1 \otimes P_2 \) can be extended to a bounded linear transformation

\[
P : C(\beta S_1 \times \beta S_2) \to C(\beta S_1 \times \beta S_2).
\]

Now, \((P_1 \otimes P_2)^2 = P_1 \otimes P_2\) implies \(P \) is a projection and hence has a
closed image. But the image of \(P_1 \otimes P_2 \) is the set of all functions of the form
\[
\sum \phi \psi_i
\]
where \(\phi_i \in C_0(S_1) \) and \(\psi_i \in C_0(S_2) \). Hence, the image of
\(P_1 \otimes P_2 \) is dense in \(C_0(S_1 \times S_2) \) which implies that \(C_0(S_1 \times S_2) \) is the
image of \(P \). Therefore \(S_1 \times S_2 \) has the projection property and the
proof is complete.

Examples. (1) If \(\Omega_0 \) is the space of ordinal numbers less than the
first uncountable ordinal \(\Omega \) with the order topology, then \(\beta \Omega_0 = \Omega_0 \cup \{ \Omega \} \), the one-point compactification of \(\Omega_0 \) [2, p. 75]. Clearly
\(\Omega_0 \) has the retraction property and hence the projection property. Comfort [1] showed that \(\Omega_0 \times \Omega_0 \) does not have the retraction property, but by Theorem 3, it does have the projection property. A more simple example of such a space is the following.

(2) Let \(L_1, L_2 \) be two long lines; i.e., \(L_1 \) and \(L_2 \) are the spaces
\(\Omega_0 \times [0, 1] \) with the order topology obtained from the lexicographic
ordering. Let \(L \) be the quotient space gotten by identifying the first
points of \(L_1 \) and \(L_2 \). Then \(L \) is a "long line which is long in two
directions." Then \(\beta L = L \cup \{ \Omega, -\Omega \} \) and let the closure of \(L_1 \) in \(\beta L \)
equal \(L_1 \cup \{ \Omega \} = \beta L_1 \). As Comfort points out, \(L \) does not have the
retraction property since \(\beta L \) is connected and \(\beta L \setminus L \) consists of two
points.

However, if \(g \in C(\beta L) \) such that \(0 \leq g \leq 1 \), \(g(L_2) = 0 \) and \(g(\Omega) = 1 \)
then

\[
Pf = f - [f(\Omega) - f(-\Omega)]g - f(-\Omega)
\]
is a bounded projection onto \(C_0(L) \).

(3) We will now give an example of a pseudocompact space which
does not have the projection property. Let \(\Lambda = \beta R \setminus (\beta N \setminus N) \) (see 6\(\phi \of [2])\). Then \(\Lambda \) is pseudocompact and \(\beta \Lambda = \beta R \). Let \(\phi_n \in C(R) \) such
that \(0 \leq \phi_n \leq 1 \), \(\phi_n(n) = 1 \), and \(\phi_n(s) = 0 \) for \(|s - n| \geq 1/3 \). Then, as in
the proof of Theorem 2, for every \(\xi = \{ x^{(n)} \} \) in \(l^\infty \),

\[
f_\xi = \sum_{n=1}^\infty x^{(n)} \quad \phi_n \text{ is in } C(R).
\]

1 We would like to thank Dr. Stelios Negrepontis for calling our attention to this space.
Hence f_ξ has an extension to βR. But $\beta R = \beta \Lambda$ implies that $T_1: l^\infty \to C(\Lambda)$ defined by $T_1 f = f_\Lambda$ is a linear isometry. Also $T_2: C(\Lambda) \to l^\infty$ defined by $T_2 f = \{f(n)\}$ is a bounded linear transformation. Therefore, if there is a bounded projection P of $C(\Lambda)$ onto $C_0(\Lambda)$ then $T_2 \circ P \circ T_1$ is a bounded projection of l^∞ onto c_0, contradicting the theorem of Phillips.

Let us close by pointing out that if S is a locally compact non-pseudocompact space then Theorem 2 says there is no simultaneous extension of $C(\beta S \setminus S)$ into $C(\beta S)$ (see [7] for details).

References

Indiana University