A METRIZATION THEOREM

JANET S. ALLSBROOK

A characterization of metrizable topological spaces in terms of subtopologies is given. First, several terms are defined in order to describe the pertinent subtopologies. Then, the characterization is readily established as a result of a metrization theorem due to Bing [1] and a metrization theorem due to Ceder [2].

Definition 1. Let \((X, \mathcal{T})\) be a topological space having the property that the intersection of an arbitrary number of open sets is open. Then \((X, \mathcal{T})\) is called a fundamental topological space.

Definition 2. Let \((X, \mathcal{T})\) be a topological space with a base \(\{B_j : j \in J\}\) such that for each \(x \in \bigcap \{B_i : i \in I\}\) there exists \(B_x \in \mathcal{B}\) where \(x \in B_x \subset \bigcap \{B_i : i \in I\}\). Then, \(\mathcal{B}\) is called a fundamental base for \(\mathcal{T}\).

Remark. If \((X, \mathcal{T})\) has a fundamental base for \(\mathcal{T}\), it is a fundamental space.

Definition 3. Let \((X, \mathcal{T})\) be a topological space. Let \(\mathcal{P}_i\), a subcollection of \(\mathcal{T}\), be a base for some topology, \(\mathcal{T}_i\), on \(X\). Consider the subcollection of \(\mathcal{T}\), \(\overline{\mathcal{P}}_i\), where \(\overline{\mathcal{P}}_i = \{X - \overline{T}_i : T_i \in \mathcal{T}_i\}\) and the closure is with respect to \(\mathcal{T}\). Then, \(\overline{\mathcal{P}}_i\) is a base for a topology on \(X\), \(\mathcal{T}/\mathcal{T}_i\). The topology, \(\mathcal{T}/\mathcal{T}_i\), is called the dual topology of \(\mathcal{T}_i\) relative to \(\mathcal{T}\). \(\overline{\mathcal{P}}_i\) is called the dual base of \(\mathcal{P}_i\).

We state two metrization theorems, without proof, to be used in the establishment of a new metrization theorem. For other proofs see [1], [2].

A Metrization Theorem of Bing. A topological space is metrizable if and only if it is \(T_1\) and regular and the topology has a \(\sigma\)-discrete base.

A Metrization Theorem of Ceder. A topological space \((X, \mathcal{T})\) is metrizable if and only if it is \(T_1\) and regular and the topology has a \(\sigma\)-closure preserving base, \(\mathcal{B} = \bigcup_{i=1}^{\infty} \{B_i\}\), such that for each \(x \in X\), and \(n\), a positive integer, \(\bigcap \{B : x \in B, B \in B_n\}\) is a neighborhood of \(x\).

We now state a metrization theorem which characterizes a topological space, \((X, \mathcal{T})\), as metrizable in terms of a countable family of bases, \(\mathcal{B}_i, i = 1, 2, \ldots\) for subtopologies, \(\mathcal{T}_i\) of \(\mathcal{T}\), and in terms of the dual bases, \(\overline{\mathcal{B}}_i, i = 1, 2, \ldots\). More precisely:

Theorem. A topological space \((X, \mathcal{T})\) is metrizable if and only if it is \(T_1\) and regular and has a base \(\mathcal{B} = \bigcup_{i=1}^{\infty} \mathcal{B}_i\) where for each \(i, \mathcal{B}_i\) is a fun-

Received by the editors July 29, 1964.

878
A METRIZATION THEOREM

Fundamental base for a topology, \(3_i \), on \(X \), and for each \(i \), the dual base, \(\bar{\beta}_i \), is a fundamental base for \(3/3_i \), the dual topology of \(3_i \), relative to \(3 \).

Proof. Let \((X, 3)\) be a topological space satisfying the hypotheses above. Then, we shall show that \((X, 3)\) satisfied the hypotheses of Ceder’s Theorem. Let \(\beta = \bigcup_{i=1}^{\infty} \beta_i \) be the given base for \(3 \). Then, for each \(x \in X \), \(n \) a positive integer, \(\bigcap \{ B : x \in B, B \in \beta_n \} \) is a neighborhood of \(x \) in \(3_n \subset 3 \). Also, \(X - \bigcup \{ \bar{B}_i : B_i \in \beta_n \} \subset \beta_n \) \(\in 3/3_i \subset 3 \). Therefore, \(\bigcup \{ \bar{B}_i \} \) is closed. Hence, \(\bigcup \{ \bar{B}_i \} = \text{cl} [\bigcup B_i] \). Thus, \(\beta_n \) is a closure preserving family.

Now, let \((X, 3)\) satisfy the hypotheses of Bing’s Theorem, and let \(\beta = \bigcup_{i=1}^{\infty} \beta_i \) be the \(\sigma \)-discrete base. We define \(\beta'_i = \beta_i \cup \{ X \} \), \(i = 1, 2, \ldots \). It is apparent that \(\beta'_i \) is a fundamental base for some subtopology, \(3'_i \), of \(3 \) for each \(i \). It remains only to show that \(\bar{\beta}'_i \) is a fundamental base, also. Now, \(\bigcap a \{ X - T_a : T_a \in \beta'_i \} = X - \bigcup a \{ T_a \} = X - \text{cl} [\bigcup a T_a] \) \(\in 3/3'_i \), since \(\beta'_i \) is a closure preserving subfamily of \(3 \) implies that \(3'_i \) is also a closure preserving subfamily of \(3 \). Thus, \(\bar{\beta}'_i \) is a fundamental base.

References

University of Florida