A NOTE ON THE BRAUER GROUP\(^1\)

ALAN McCONNELL

1. Introduction. Let \(F \) be a field, \(K \) an extension field; let \(\mathcal{B}(K/F) \) denote the Brauer group of classes of simple algebras with center \(F \) split by \(K \). \(\mathcal{B}(K/F) \) is a functor in both \(K \) and \(F \) which is “left exact” in \(K \): if \(L \) is an extension of \(K \), the injection \(K \rightarrow L \) induces an injection \(\mathcal{B}(K/F) \rightarrow \mathcal{B}(L/F) \).

Now assume that \(F \) is a field of characteristic \(p > 0 \), and let \(C \) be a purely inseparable, \(K, \) a separable extension of \(F \), both finite. It is well known that \(C \otimes_F K \), is a field, which we shall denote by \(K \); \(K \) is the direct sum (“inverse product”) of \(C \) and \(K \), in the category of finite extension fields of \(F \). One might expect that since \(\mathcal{B}(\cdot/F) \) is left exact, this property of \(K \) is reflected in \(\mathcal{B}(K/F) \). Indeed, if \([K_\ast : F] \) and \([C : F] \) are relatively prime, one sees easily that \(\mathcal{B}(K/F) \) is the direct sum of \(\mathcal{B}(C/F) \) and \(\mathcal{B}(K_\ast/F) \). However, if \([K_\ast : F] \) is also a \(p \)th power, \(\mathcal{B}(C/F) \) and \(\mathcal{B}(K_\ast/F) \) will in general have a nontrivial intersection; an algebra class over \(F \) can be split by both \(C \) and \(K_\ast \).

The question arises: is \(\mathcal{B}(K/F) \) generated by its subgroups \(\mathcal{B}(C/F) \) and \(\mathcal{B}(K_\ast/F) \)? The purpose of this note is to give an example which answers this question in the negative.

2. The example. As in the introduction, let \(F \) be a field of characteristic \(p > 0 \), and let \(C = F(\eta) \) where \(\eta^p \in F \), \(\eta \notin F \); assume further that \(C^p = F \). Let \(K_\ast \) be a cyclic extension of \(F \), \([K_\ast : F] = p \). Let \(K = K_\ast \otimes C \) be the composite extension field. Finally, we assume that there exists a division algebra \(D \) with center \(F \) and maximal commutative subfield \(K \). The construction of a specific \(F, C, K_\ast \), and \(D \) will be done in the 3rd section. The Brauer class of \(D \), \([D] \), is thus an element of \(\mathcal{B}(K/F) \).

Theorem. \([D] \in \mathcal{B}(K/F) \) is not the product of \(\alpha \in \mathcal{B}(K_\ast/F) \) and \(\beta \in \mathcal{B}(C/F) \).

Proof. Suppose \([D] = \alpha \cdot \beta \); we derive a contradiction. Let \(A \in \alpha \) be central simple over \(F \) with maximal commutative subfield \(K_\ast \), \(B \in \beta \) have \(C \) as maximal commutative subfield [1, Theorem 4.27, p. 61]. We note that neither \(\alpha \) nor \(\beta \) is the identity element of \(\mathcal{B}(K/F) \), since \(D \) is not split by \(C \) or \(K_\ast \). We have \([A : F] = p^2 = [B : F] \), and since neither \(A \) nor \(B \) are matrices over \(F \), they must both be division alge-

Received by the editors February 24, 1966.

\(^1\) This work was supported by NSF Grant GP-5276.
bras [1, Theorem 3.18, p. 43]. By hypothesis $A \otimes B \cong D \otimes \mathfrak{m}$ where \mathfrak{m} is a full matrix ring over F; however, a dimension count shows $\mathfrak{m} = F$, and $A \otimes B \cong D$. Thus we can consider A and B as division subalgebras of D, both with center F and each the centralizer of the other [1, Theorem 4.13, p. 53].

Now A is a cross-product, indeed a cyclic algebra: $A = K_s \oplus yK_s \oplus \cdots \oplus y^{p-1}K_s$, where y satisfies the following properties: $y^{-1}ky = k^\sigma (\sigma \in \mathcal{O}(K_s/F), \sigma \neq 1)$ and $yp \in F$ [1, p. 74]. Considered as an element of D, y must commute with B and hence with $C \subset B$. Thus $C(y)$ is a field contained in D. On the one hand, $C(y)$ must be a bigger field than C, since if y were in C it would commute with K_s; on the other hand, since $yp \in F$ and $C_p = F$, $y \in C(y)$ must be in C. This contradiction proves the theorem.

3. Construction of D. We must exhibit: a field F, a division algebra D with center F and degree p^2 over F (i.e. $[D:F] = p^4$); a subfield of D, K_s, containing F and cyclic over P; a field C such that $F \subset C \subset D$ and $C_p = F$, such that C and K_s commute elementwise.

Let $F = GF(p^n)(\pi)$ where π is an indeterminate over $GF(p)$. Let R be the (unique) cyclic extension of $GF(p)$ of degree p^2. Set $L = R(\pi)$; L is a cyclic extension of F of degree p^2. Let σ be the generating automorphism of $g(L/F); \sigma^p = 1$. Finally, form $D = (L, \sigma, \pi)$ [1, p. 74].

One sees immediately via polynomial degree considerations that the indeterminate π is not a norm from $K_s = \{k \in L; k^\sigma = k\}$. This suffices to show that D is a division algebra [1, Theorem 7.19, p. 98]. Note that the field K_s is cyclic of degree p over F.

We construct C as follows: by definition of D there exists an element $y \in D$ such that $y^p = \pi$ (y induces the automorphism σ in $L \subset D = (L, \sigma, \pi)$). Let $C = F(y^p)$; then, since $(y^p)^p = \pi$, $C_p = F$. Note that C and K_s commute, since y^p and K_s do; thus $K = C \otimes K_s$ is a subfield of D.

Bibliography