Let \((x_m : m \in D)\) be a net, which we will call the \textit{iterate net}, in a topological space \(X\) such that, for each \(m \in D\), there is a net \((x^m_d : d \in D_m) \to x_m\). We will call the net
\[
\left(x^{\beta(m)}_\beta : \langle m, \beta \rangle \in D \times \prod_{m \in D} D_m \right),
\]
where the product set is directed by the product order, the \textit{composite net} of the system of nets. It is well known (see \([5, p. 69]\)) that if the iterate net converges then the composite net converges to the same limit. Indeed, this property helps characterize topologies through convergence classes (see \([5, p. 74]\)). We will show that the converse of this iterated limit theorem characterizes regular spaces.

\textbf{Theorem A.} A topological space is regular iff any iterate net converges to the limit of the composite net whenever that limit exists.

\textbf{Proof.} Let \(X\) be a regular topological space and suppose the composite net of a system of nets, with the above notation, converges to a point \(x \in X\). Let \(G\) be any open set containing \(x\). By regularity, we may choose an open set \(G^*\) such that \(x \in G^* \subseteq c(G^*) \subseteq G\). Now there exists an element \(\langle m^*, \beta^* \rangle\) in the product directed set such that \(x^m_{\beta(m)} \in G^*\) for all \(\langle m, \beta \rangle \geq \langle m^*, \beta^* \rangle\). Since we have \((x^m_d : d \in D_m) \to x_m\) and each \(x^m_{\beta(m)} \in G^*\) for \(m \geq m^*\), it follows that \(x_m \in c(G^*) \subseteq G\) for \(m \geq m^*\) and the limit of the iterate net is \(x\). Conversely, suppose \(X\) is not regular. Then there exists a point \(x\) and an open set \(G^*\) containing it such that \(c(G) \not\subseteq G^*\) for any open set \(G\) containing \(x\). Let \(\{G_m : m \in D\}\) be the family of all open sets containing \(x\), directed by inclusion. Since \(c(G_m) \not\subseteq G^*\) for each \(m \in D\), there exists a point \(x_m \in c(G_m) \setminus G^*\). Since \(x_m \in c(G_m)\), there exists a net \((x^m_d : d \in D_m)\) in \(G_m\) converging to \(x_m\). Since \(x_m \in G^*\) for each \(m \in D\), the iterate net \((x_m : m \in D)\) cannot converge to \(x\). The composite net does converge to \(x\), however, as the following shows. Let \(G\) be an arbitrary open set containing \(x\). Then \(G = G_d\) for some \(d \in D\). Let \(\langle d, \alpha \rangle\) be a member of the product directed set with \(\alpha\) fixed but arbitrary. Then if \(\langle m, \beta \rangle \geq \langle d, \alpha \rangle\), then \(x^{m}_{\beta(m)} \in G_m \subseteq G_d = G\). q.e.d.

Received by the editors December 19, 1965.

\(^1\) This work was partially supported by the National Science Foundation under NSF grants GP 4432 and GY 469.
This characterization of regularity was motivated by results of Dieudonné [2] and of Cook and Fischer [3] who use a product of filters and a "compression" operator on families of filters, respectively.

Since the property of the theorem depends only on a notion of convergence for nets, we may call a poset regular with respect to its order convergence (or \(o \)-convergence as defined in [1, p. 60]) iff any iterate net converges to the limit of the composite net whenever that limit exists. We recall that a point \(x \) in a poset is a limit of a net \((x_m: m \in D)\) with respect to its order convergence iff \(\lim x_m = x \), where these limits are taken in the completion by cuts.

Theorem B. Every poset is regular in its order convergence.

Proof. In the above notation, we need only prove that \(\lim x_m \leq \lim \sup x_{\beta(m)} \) since then, by duality,

\[
x = \lim \inf x_{\beta(m)} \leq \lim \inf x_m \leq \lim \sup x_m \leq \lim \sup x_{\beta(m)} = x
\]

and so \((x_m: m \in D) \to x\) as desired. We must show, then, that

\[
\bigwedge_{m^*} \bigvee_{m \geq m^*} x_m \leq \bigwedge_{(m^*, \beta^*)} \bigvee_{(m^*, \beta) \geq (m^*, \beta^*)} x_{\beta(m)}.
\]

Let us fix \((m^*, \beta^*)\), which gives us an element

\[
\bigvee_{(m, \beta) \geq (m^*, \beta^*)} x_{\beta(m)}
\]

over which we take the infimum on the right-hand side, and we shall show that (for the same fixed \(m^* \)), the element

\[
\bigvee_{m \geq m^*} x_m
\]

is smaller, and so the infima are comparable as designated. We calculate that

\[
\bigvee_{m \geq m^*} x_m = \bigvee_{m \geq m^*} \bigwedge_{d \geq d^*} x_d \leq \bigwedge_{m \geq m^*} \bigvee_{d \geq \beta^*(m)} x_d \leq \bigwedge_{m \geq m^*} \bigvee_{d \geq d^*} x_d \leq \bigwedge_{(m, \beta) \geq (m^*, \beta^*)} \bigvee_{m \geq m^*} x_{\beta(m)},
\]

where the final inequality follows from the fact that for any element \(x_d \) on the left, we have \(m \geq m^* \) and \(d \geq \beta^*(m) \). Then by defining \(\beta(k) = d \) if \(k = m \) and \(= \beta^*(m) \) otherwise, we have \(x_{\beta(m)} = x_d \) with \((m, \beta) \geq (m^*, \beta^*) \); thus the element appears on the right. q.e.d.
An application of this result is an immediate proof of a result of DeMarr [4]:

COROLLARY. Every O-space is a regular Hausdorff space.

Proof. The Hausdorff condition is immediate since limits are unique in a complete lattice. Suppose we have a system of nets with the composite net converging with respect to the topology. Since the space is an O-space, by definition it is homeomorphic to a subset of a complete lattice with each net converging with respect to the topology iff it o-converges to that limit. Since the complete lattice is regular by Theorem B, the iterate net o-converges to the same limit and hence also with respect to the topology. By Theorem A, the space is regular.

BIBLIOGRAPHY

University of Wisconsin-Milwaukee