Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Completeness, the recursion theorem, and effectively simple sets


Author: Donald A. Martin
Journal: Proc. Amer. Math. Soc. 17 (1966), 838-842
MSC: Primary 02.70
DOI: https://doi.org/10.1090/S0002-9939-1966-0216950-5
MathSciNet review: 0216950
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. C. E. Dekker, A theorem on hypersimple sets, Proc. Amer. Math. Soc. 5 (1954), 791-796. MR 0063995 (16:209b)
  • [2] T. G. McLaughlin, On a class of complete sets, Canad. Math. Bull. 8 (1965), 33-37. MR 0182561 (32:44)
  • [3] D. A. Martin, A theorem on hyperhypersimple sets, J. Symbolic Logic 28 (1963), 273-278. MR 0177887 (31:2145)
  • [4] J. Myhill, Creative sets, Z. Math. Logik. Grundlagen Math. 1 (1955), 97-108. MR 0071379 (17:118g)
  • [5] E. Post, Recursively enumerable sets of postivie integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284-316. MR 0010514 (6:29f)
  • [6] G. E. Sacks, A simple set which is not effectively simple, Proc. Amer. Math. Soc. 15 (1964), 51-55. MR 0156780 (28:24)
  • [7] J. R. Schoenfield, Quasicreative sets, Proc. Amer. Math. Soc. 8 (1957), 964-967. MR 0089808 (19:723b)
  • [8] R. M. Smullyan, Effectively simple sets, Proc. Amer. Math. Soc. 15 (1964), 893-894. MR 0180485 (31:4720)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02.70

Retrieve articles in all journals with MSC: 02.70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1966-0216950-5
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society