COMPLETENESS, THE RECURSION THEOREM, AND EFFECTIVELY SIMPLE SETS

DONALD A. MARTIN

1. Introduction. The main result of this note is that every effectively simple set is complete, i.e., of the highest recursively enumerable degree of unsolvability. A recursively enumerable set of natural numbers is called simple if its complement, though infinite, possesses no infinite recursive subset. Let \(W_0, W_1, \cdots \) be the standard enumeration of all recursively enumerable (r.e.) sets. Smullyan [8] calls an r.e. set \(S \) effectively simple if \(\overline{S} \) (the complement of \(S \)) is infinite and there is a recursive function \(f \) such that, for every number \(e \), if \(W_e \subseteq \overline{S} \) then \(f(e) \) is greater than the cardinality of \(W_e \). It is immediate that every effectively simple set is simple. In [6] Sacks shows by direct construction that not every simple set is effectively simple. Sacks' theorem is a consequence of our main result and Friedberg's solution of Post's problem since [1] every nonzero r.e. degree of unsolvability is the degree of a simple set.

McLaughlin [2] calls an r.e. set with an infinite complement (a coinfinite r.e. set) \(S \) strongly effectively simple if there is a recursive function \(f \) such that, for each \(e \), if \(W_e \subseteq \overline{S} \) then \(f(e) \) is greater than every member of \(W_e \). Strongly effectively simple sets are all effectively simple, but we can, by varying slightly Sacks' construction and argument [6], produce an effectively simple set which is not strongly effectively simple. McLaughlin [2] proves that every strongly effectively simple set is either hypersimple or complete, a fact which is subsumed under our result.

The completeness of effectively simple sets can be proved by a simple argument using the recursion theorem, but we prefer to attack a more general problem. Several kinds of r.e. sets (e.g., creative sets [4] and quasicreative sets [7]) have been proved complete by methods which involve the recursion theorem. Our aim is to capture the essence of these methods. To do this, we shall define a rather general class \(\mathcal{D} \) of r.e. sets. It will be almost trivial to show—directly from definitions—that such classes as those of creative sets, quasicreative sets, and effectively simple sets are included in \(\mathcal{D} \). We shall use the recursion theorem to show that every member of \(\mathcal{D} \) is complete. We shall conclude by showing that every truth-table complete set belongs to \(\mathcal{D} \).

Received by the editors November 18, 1965.

1 A. H. Lachlan has pointed out to the author that, by replacing \(h \) with a partial recursive functional in an appropriate manner, we could make \(\mathcal{D} \) into the class of all complete r.e. sets.
2. **The class** \(\mathcal{D} \). Let \(\beta_0, \beta_1, \cdots \) be the standard enumeration of all partial recursive functions (of one argument). We define a partial recursive function \(\pi(e, z) \) as follows:

\[
\pi(e, z) = \mu y \left[(x) z_x y (\beta_x(x) \text{ is defined}) \text{ and there are at least } z \text{ numbers } x \leq y \text{ for which } \beta_x(x) = 1 \right].
\]

The *representing function* of a set of numbers \(A \) is that function which is zero for all \(x \in A \) and 1 for all \(x \notin A \). We call a relation \(P(x, A, B) \) between numbers \(x \), sets \(A \), and sets \(B \) *admissible* if there are recursive functions \(g(e, x) \) and \(h(x) \) with the following property: For all numbers \(e \) and \(x \) and for every set \(C \), if \(\pi(e, h(x)) \) is defined and if the representing function of \(C \) agrees with \(P \) on all numbers \(\leq \pi(e, h(x)) \), then

\[
\sim P(x, W_{g(e,x)}, C),
\]

where \(\sim \) means *not*.

The property of admissible relations \(P(x, A, B) \) which is crucial for the theorem below is, in intuitive terms, this: Given a number \(x \) and a coinfinte recursive set \(C \), we can effectively find the index of an r.e. set \(W \) such that \(\sim P(x, W, C) \), and furthermore we have an effective bound \(h(x) \) to the information about \(C \) which we will need to enumerate \(W \).

We say that a relation \(P(x, A, B) \) is *satisfied* by a set \(C \) if

\[
(n) P(n, W_n, C).
\]

We are now ready to define \(\mathcal{D} \). \(\mathcal{D} \) is to consist of those coinfinte r.e. sets \(D \) such that some admissible relation is satisfied by \(D \).

Theorem. *Every member of \(\mathcal{D} \) is complete.*

Proof. Let \(D \) belong to \(\mathcal{D} \). Let \(P(x, A, B) \) be an admissible relation satisfied by \(D \), and let \(g(e, x) \) and \(h(x) \) be the functions whose existence is guaranteed by the admissibility of \(P \). Let \(d \) be a recursive function whose range is \(D \). For each \(s \), we set \(D^s = \{ x: (E y)_{y \leq s} d(y) = x \} \). For each \(s \) and \(x \), let \(K^s_x \) be the set of the least \(x \) members of \(D^s \).

There is a recursive function \(p(e, t) \) such that, for each \(e \) and \(t \),

\[
\beta_{p(e,t)} = \begin{cases}
\text{the representing function of } D^{\beta_e(t)} \text{ if } \beta_e(t) \text{ is defined}; \\
\text{the empty partial function otherwise.}
\end{cases}
\]

By the recursion theorem, there is a recursive function \(q(e, t) \) such that

\[
(q)(t)[W_{g(p(e,t), q(e,t))} = W_{q(e,t)}].
\]
For each \(e \) and \(t \), let
\[
v(e, t) = \mu s[K_{h(q(e, t))}^s \subseteq \overline{D}].
\]
v is recursive in \(D \).

Let \(W \) be any r.e. set. Let \(f(s, x) \) be a recursive function such that
\[
(x)[x \in W \iff (Es) f(s, x) = 0].
\]
Let \(e \) be an index of the partial recursive function \(\mu s[f(s, x) = 0] \). We shall show that \(\beta_e(t) < v(e, t) \) for each \(t \) such that \(\beta_e(t) \) is defined. This will mean that \(W \) is recursive in \(v \) and hence in \(D \), since we shall have
\[
(x)[x \in W \iff (Es) f(s, x) = 0].
\]
Suppose that, contrary to what we wish to establish, \(\beta_e(t) \) is defined for some \(t \) and \(\beta_e(t) \geq v(e, t) \). Then, by the definitions of \(v \) and of \(K_{e, t} \),
\[
K_{h(q(e, t))}^{\beta_e(t)} \subseteq \overline{D}.
\]
But this just says that the least \(h(q(e, t)) \) members of \((D^{\beta_e(t)})^- \) are in \(\overline{D} \). Hence the representing function of \(D \) agrees with \(\beta_{p(e, t)} \), the representing function of \(D^{\beta_e(t)} \), on all numbers \(\leq \pi(p(e, t), h(q(e, t))) \). But then
\[
\sim P(q(e, t), W_{q(p(e, t), q(e, t))}, D),
\]
and the definition of \(q(e, t) \) gives us that
\[
\sim P(q(e, t), W_{q(e, t)}, D),
\]
which contradicts the hypothesis that \(P \) is satisfied by \(D \).

3. **Effectively simple sets.** We now show that every effectively simple set belongs to \(\mathfrak{D} \). Let \(S \) be effectively simple and let \(f \) be a recursive function such that, for each \(e \), if \(W_e \subseteq S \) then \(f(e) \) is greater than the cardinality of \(W_e \). Let \(h(x) = f(x) \), for all \(x \). Let \(g(e, x) \) be a recursive function satisfying
\[
y \in W_{q(e, x)} \iff \pi(e, h(x)) \text{ is defined and } y \leq \pi(e, h(x)) \text{ and } \beta_e(y) = 1.
\]
Let \(P(x, A, B) \) hold if and only if \(h(x) \) is greater than the cardinality of \(A \) or \(A \subseteq \overline{B} \).

Evidently \(P \) is satisfied by \(S \). Using \(h \) and \(g \), we can see that \(P \) is admissible, as follows:

Let \(x \) and \(e \) be such that \(\pi(e, h(x)) \) is defined and let \(C \) be a set whose representing function agrees with \(\beta_e \) on all numbers \(\leq \pi(e, h(x)) \).
Since \(\pi(e, h(x)) \) is defined, \(W_{\varphi(e, x)} \) is the set of all numbers \(\leq \pi(e, h(x)) \) which belong to \(\mathcal{C} \). Hence \(W_{\varphi(e, x)} \subseteq \mathcal{C} \). Furthermore, \(W_{\varphi(e, x)} \) has \(h(x) = f(x) \) members, so that \(\sim P(x, W_{\varphi(e, x)}, C) \).

In [8] Smullyan proves a theorem one of whose main consequences is the existence of hypersimple effectively simple sets. As a final remark on effectively simple sets, we point out that this consequence follows from general elementary facts: Evidently every coinfinite r.e. superset of an effectively simple set is effectively simple; and in [3] it is shown that every simple set has a hypersimple superset. Similar considerations show that there are hypersimple strongly effectively simple sets.

4. Truth-table complete sets. The truth-table complete sets were defined by Post [5] and are a proper subclass of the complete sets. For any function \(v \), the function \(\check{v} \) is defined by \(\check{v}(x) = \prod_{i \leq x} p_i^{v(i)} \), where \(p_i \) is the \(i+1 \)st prime number. An r.e. set \(V \) is truth-table complete if, for every r.e. set \(W \), there are recursive functions \(p(x, y) \) and \(q(x) \) such that, for each \(x \), \(p(x, \check{v}(q(x))) \) is the representing function of \(W \), where \(v \) is the representing function of \(V \).

Theorem. Every truth-table complete set is a member of \(\mathcal{D} \).

Proof. Let \(V \) be truth-table complete, and let \(v \) be its representing function. Let \(W = \{ x : x \in W_x \} \). Let \(p \) and \(q \) be recursive functions related to \(V \) and \(W \) as in the definition of truth-table completeness. Let

\[
P(x, A, B) \iff \{ x \in A \iff p(x, \check{v}(q(x))) = 0 \}, \text{ where } b \text{ is the representing function of } B;
\]

\[
h(x) = q(x);
\]

\[
y \in W_{\varphi(e, x)} \iff p(y, \check{v}(q(y))) > 0,
\]

with \(g \) recursive. Clearly \(P \) is satisfied by \(V \). The reader may easily verify the admissibility of \(P \), using \(h \) and \(g \).

It is worth noting that not every member of \(\mathcal{D} \) is truth-table complete. In particular, Post [5] shows that no hypersimple set is truth-table complete, whereas we have seen in §3 that there are hypersimple sets which belong to \(\mathcal{D} \).

References

Harvard University