COEFFICIENT ESTIMATES FOR STARLIKE FUNCTIONS OF ORDER \(\alpha \)

A. V. BOYD

In [1] MacGregor obtained upper bounds for the moduli of the coefficients of a function \(z + \sum_{n=0}^{\infty} a_n z^n \) which is starlike in the unit disc. The purpose of this note is to extend MacGregor's result to the class of starlike functions of order \(\alpha \) introduced by Robertson, [2], and to obtain an improvement on this when \(f(z) \) is bounded in the unit disc.

Definition. A function \(f(z) \) is said to be starlike of order \(\alpha \), \((0 \leq \alpha < 1)\), if it is univalent and \(\Re \{zf'(z)/f(z)\} \geq \alpha \) for \(|z| < 1 \).

Theorem. If \(f(z) = z + \sum_{n=0}^{\infty} a_n z^n \) is starlike of order \(\alpha \) then

\[
|a_n| \leq \left(\frac{(2-2\alpha)/k + m - 1}{m} \right)
\]

where \(mk+1 \leq n \leq mk+k \), \(m = 1, 2, 3, \ldots \). If, further, \(|f(z)| < 1 \) for \(|z| < 1 \) then we also have

\[
\sum_{n=p-k+1}^{p} (n + 1 - 2\alpha)^2 |a_n|^2 \leq 4(1 - \alpha)^2 \quad \text{for} \quad p \geq k.
\]

Lemma 1.

\[
4(1 - \alpha) \left\{ 1 - \alpha + \sum_{m=1}^{q-1} (mk+1-\alpha) \left[\frac{1}{m!} \prod_{\mu=0}^{m-1} \left(\mu + \frac{2-2\alpha}{k} \right) \right] \right\}
\]

\[
= \left\{ \frac{k}{(q-1)!} \prod_{\mu=0}^{q-1} \left(\mu + \frac{2-2\alpha}{k} \right) \right\}^2 \quad \text{for} \quad q = 2, 3, \ldots
\]

This is easily proved by induction on \(q \).

Lemma 2. If \(k = 1, 2, \ldots, q = 1, 2, \ldots \), and \(\alpha < 1 \) then

\[
(n - 1)^2 \geq (qk)^2 (n - \alpha)/(qk + 1 - \alpha) \quad \text{for} \quad n \geq qk + 1.
\]

Proof of Theorem. By the method of [1], if \(g(z) = zf'(z)/f(z) \) and \(h(z) = (g(z) - 1)/(g(z) + 1 - 2\alpha) = b_k z^k + b_{k+1} z^{k+1} + \cdots \) then \((n-1)a_n = 2(1-\alpha)b_n \) for \(n = k+1 \) to \(2k \), and

\[
\sum_{n=k+1}^{2k} (n - 1) |a_n|^2 \leq 4(1 - \alpha)^2.
\]

Received by the editors March 16, 1966.

1016
Also, for some set of constants \(d_n \),
\[
\sum_{n=k+1}^{p} (n - 1) d_n z^n + \sum_{n=p+1}^{\infty} d_n z^n = h(z) \left\{ 2(1 - \alpha) z + \sum_{n=k+1}^{p-k} (n + 1 - 2\alpha) d_n z^n \right\}.
\]
Since \(|h(z)| < 1\) for \(|z| < 1\) it then follows as in the original paper [3] of Clunie that, for \(0 \leq r < 1 \),
\[
\sum_{n=k+1}^{p} (n - 1)^2 \left| a_n \right|^2 r^{2n} \leq 4(1 - \alpha)^2 r^2 + \sum_{n=k+1}^{p-k} (n + 1 - 2\alpha)^2 \left| a_n \right|^2 r^{2n}.
\]
Since \(a_1 = 1 \) and \(a_2 = \cdots = a_k = 0 \) this may be written as
\[
\sum_{n=p-k+1}^{p} (n - 1)^2 \left| a_n \right|^2 r^{2n} \leq 4(1 - \alpha) \sum_{n=1}^{p-k} (n - \alpha) \left| a_n \right|^2 r^{2n}.
\]
Letting \(r \) tend to 1 yields
\[
\sum_{n=p-k+1}^{p} (n - 1)^2 \left| a_n \right|^2 \leq 4(1 - \alpha) \left\{ 1 - \alpha + \sum_{n=k+1}^{p-k} (n - \alpha) \left| a_n \right|^2 \right\}.
\]
We next consider
\[
\sum_{n=mk+1}^{mk+k} (n - 1) \left| a_n \right|^2 \leq \left\{ \frac{k}{(m - 1)!} \prod_{\mu=0}^{m-1} \left(\mu + \frac{2 - 2\alpha}{k} \right) \right\}^2
\]
and
\[
\sum_{n=mk+1}^{mk+k} (n - \alpha) \left| a_n \right|^2 \leq (mk + 1 - \alpha) \left\{ \frac{1}{m!} \prod_{\mu=0}^{m-1} \left(\mu + \frac{2 - 2\alpha}{k} \right) \right\}^2.
\]
In the case \(m = 1 \), (A) reduces to equation (i) and (B) follows by an application of Lemma 2 to (A). For \(m = q > 1 \), (A) and (B) are proved inductively, as in [1], by applying (B) with \(m = 1 \) to \(q - 1 \) and Lemma 1 to (iii) with \(p = (q+1)k \), and Lemma 2 to (A) with \(m = q \).

From (A) it follows that, for \(mk+1 \leq n \leq mk+k \),
\[
\left| a_n \right| \leq \frac{k}{(n - 1)(m - 1)!} \prod_{\mu=0}^{m-1} \left(\mu + \frac{2 - 2\alpha}{k} \right)
\leq \frac{1}{m!} \prod_{\mu=0}^{m-1} \left(\mu + \frac{2 - 2\alpha}{k} \right).
\]
It should be noted that this result

$$|a_n| \leq \left(\frac{(2 - 2\alpha)/k + m - 1}{m} \right)$$

is "sharp" for $n = mk + 1$, $(m = 1, 2, \ldots)$, for the function $f(z) = z(1 - z^k)^{-2(1 - \alpha)/k}$; and that when $\alpha = 0$ it gives the same bounds for the coefficients as Waadeland [4] found in the case of k-symmetric univalent functions.

We also have, from (ii), that

$$\sum_{n=p-k+1}^{p} (n + 1 - 2\alpha)^2 |a_n|^2r^{2n} \leq 4(1 - \alpha) \sum_{n=1}^{p} (n - \alpha) |a_n|^2r^{2n}$$

$$\leq 4(1 - \alpha) \sum_{n=1}^{\infty} (n - \alpha) |a_n|^2r^{2n}.$$

As on page 232 of [5], the right hand-side does not exceed

$$\frac{2(1 - \alpha)}{\pi} \int_{0}^{2\pi} \left\{ |\text{Re} \frac{zf'(z)}{f(z)} - \alpha| \right\} d\theta$$

where $z = re^{i\theta}$

$$= 4(1 - \alpha)^2.$$

It now follows that

$$\sum_{n=p-k+1}^{p} (n + 1 - 2\alpha)^2 |a_n|^2 \leq 4(1 - \alpha)^2 \quad \text{for} \quad p \geq k.$$

The author would like to thank the referee for his useful comments and his reference to [4].

References

University of the Witwatersrand, Johannesburg, South Africa