ON EXTENSIONS OF CAYLEY ALGEBRAS

MARGARET M. HUMM AND ERWIN KLEINFELD

Kaplansky in Theorem 2 of [3] has shown that if \(A \) is an alternative algebra with identity element 1 which contains a subalgebra \(B \) isomorphic to a Cayley algebra and if 1 is contained in \(B \) then \(A \) is isomorphic to the Kronecker product \(B \otimes T \), where \(T \) is the center of \(A \). Jacobson in Theorem 2 of [2] has shown that if \(A \) is an alternative algebra which contains a subalgebra \(B \) isomorphic to a Cayley algebra, then the identity \(e \) of \(B \) must lie in the center of \(A \), provided \(A \) has characteristic different from 2. He also has given a new proof of the Kaplansky result, using his classification of completely reducible alternative bimodules. In the present note we present a generalization of the aforesaid result by Jacobson, which incidentally is also valid for characteristic 2.

Theorem. Let \(A \) be an alternative algebra over \(F \) and \(B \) any subalgebra with identity \(e \). Then consider the following two conditions.

(i) There exist \(x, y \) in \(B \), \(\alpha \) in \(F \) such that \(e = \alpha(x, y)^4 \), where \((x, y) = xy - yx \).

(ii) The ideal \(I \) of \(B \), generated by all associators of \(B \) equals \(B \). If \(B \) satisfies (i) then \(e \) must be in the nucleus \(N \) of \(A \). If \(B \) satisfies (i) and (ii) then \(e \) must be in the center \(C \) of \(A \).

Proof. It will be helpful to recall some identities that hold in all alternative rings \(R \). Let \(p, q, r, s, t, x, y, z \) be arbitrary elements of \(R \) and \(n \) an arbitrary element of the nucleus \(N' \) of \(R \). Then

1. \((s, t)^4\) is in \(N' \),
2. \((n, r)\) is in \(N' \),
3. \((n, (x, y, z)) = 0 \),
4. \((n, r)(x, y, z) = -(n, x)(r, y, z) \),
5. \((p^2, q) = p(p, q) + (p, q)p \).

A proof of (1) may be found in Theorem 3.1 (ii) of [5]. Proofs of (2), (3) and (4) are contained in Lemma 2.3 (ii), (iii) and (iv) of [4]. Identity (5) may be verified directly by expanding both sides of the equation and using the alternative law. If \(B \) satisfies the hypothesis and condition (i), then one may apply (1) directly to obtain that \(e \)
belongs to N. If B also satisfies condition (ii), then select $n = e, r$ as arbitrary in A and x, y, z arbitrary in B and substitute this in (4). Then $(e, r)(x, y, z) = -(e, x)(r, y, z) = 0$, since $(e, x) = 0$. The associator ideal I of B may be characterized as the additive subgroup of B generated by all elements of the form (B, B, B) and $(B, B, B)B$. We have already proved that $(e, r)(B, B, B) = 0$. But (e, r) belongs to N as a result of (2), so that $(e, r) \cdot (B, B, B)B = 0$ is also obvious and hence $(e, r)I = 0$. Since $I = B$ and e itself belongs to B, we have $(e, r)e = 0$. Using (2) we may substitute $n = (e, r)$ in (3) to obtain also that $(B, B, B)(e, r) = 0$. As I may also be characterized as the additive subgroup generated by elements of the form (B, B, B) and $B(B, B, B)$, we obtain $I(e, r) = 0$, and hence $e(e, r) = 0$. At this point we substitute $p = e, q = r$ in (5) and obtain $(e, r) = (e^2, r) = e(e, r) + (e, r)e = 0$. This places e in C and the proof of the theorem is complete.

Condition (i) certainly holds when B is taken to be a quaternion algebra and hence a priori if B is a Cayley algebra. Since Cayley algebras are simple and not associative, condition (ii) clearly holds when B is taken to be a Cayley algebra. Thus we obtain Jacobson's result as a corollary to our theorem. On the other hand one may readily construct other alternative algebras to which our theorem applies.

We conclude with an example that shows a quaternion algebra may be embedded as a subalgebra of an associative algebra and with the identity quaternion not in the center of the larger algebra. Consider the free associative algebra S on the four generators w, x, y, z. Define relations on x, y, z which make them behave as the quaternions $1, i, j$ respectively. In the quotient algebra R, words have the form

$$\cdots q_1 w^{k_1} \cdots q_n w^{k_n} \cdots$$

where $q_i = \pm x, \pm y, \pm z, \pm yz$. Then R contains a copy of the quaternions with identity x, but $wx \neq xw$, so that x is not in the center of R. If an example that is alternative but not associative is desired, then one may take a direct product of R with a Cayley algebra.

Bibliography

A CONDITION FOR A FINITE GROUP TO BE NILPOTENT

STEPHEN MONTAGUE AND GOMER THOMAS

Let \mathcal{C} be a class of groups such that:

(i) If G is in \mathcal{C}, then every homomorphic image of G is in \mathcal{C}.

(ii) If G is finite and $G/\phi(G)$ is in \mathcal{C}, where $\phi(G)$ is the Frattini subgroup of G, then G is in \mathcal{C}.

Examples of such classes are the class of nilpotent groups and the class of supersolvable groups. Others can be found in a paper by Baer [1].

In this note a theorem of P. Hall on nilpotent groups is proved as a corollary to the following:

Theorem. If G is a finite group with a subgroup H such that $\phi(H)$ is normal in G and $G/\phi(H)$ is in \mathcal{C}, then G is in \mathcal{C}.

Lemma (Huppert). Let G be a finite group, H be a subgroup of G, and N be a subgroup of H such that N is normal in G and $N \leq \phi(H)$. Then $N \leq \phi(G)$.

Proof. If not, G would have to have a maximal subgroup U such that $N \nsubseteq U$. Then $H = G \cap H = NU \cap H = N(U \cap H) = U \cap H$, since $N \leq \phi(H)$. But this implies $H \leq U$, contrary to $N \nsubseteq U$.

Proof of Theorem. An application of the Lemma with $N = \phi(H)$ shows that $\phi(H) \leq \phi(G)$. Hence $G/\phi(G)$ is in \mathcal{C}, and so G is in \mathcal{C}.

Corollary. If G is a finite group with a normal subgroup H such that H is nilpotent and G/H' is nilpotent, where H' is the commutator subgroup of H, then G is nilpotent.

Proof. Since H is nilpotent, $\phi(H)$ contains H'. Hence $G/\phi(H)$ is

Received by the editors September 22, 1965.