NOTE ON A WHITEHEAD PRODUCT

GADE V. KRISHNARAO

The aim of this note is to prove

Theorem. Let \(\iota_n \) generate \(\pi_n(S^n) \) and \(n=4s+1 \), \(s \) being a positive integer. Then \([\iota_n, \iota_n] \) is not divisible by two.

Let \(i, j, \) and \(k \) be homomorphisms in the exact sequences of the fiber bundles \(O(n) \to O(n+1) \to S^n, \ n \geq 1 \)

\[
\begin{align*}
\cdots \pi_m(O(n)) & \to \pi_m(O(n + 1)) \to \pi_m(S^n) \to \pi_{m-1}(O(n)) \\
\pi_{m+1}(S^{n+1}) & \to \pi_m(O(n + 1)) \to \pi_m(S^n).
\end{align*}
\]

and \(d = j \circ k \) be the composite

\[j \circ k \circ \iota_n \circ O(n) \to \pi_m(O(n + 1)) \to \pi_m(S^n). \]

We state an easy lemma without proof.

Lemma 1. Let \((E, F) \to (B, \ast) \) be a fibration and \(\partial \) be the boundary homomorphism in its exact homotopy sequence. Then \(\partial(\alpha \circ E \beta) = \partial(\alpha) \circ \beta \) where \(\alpha \in \pi_r(B), \ E \beta \in \pi_q(S^n) \) and \(E \) is the suspension homomorphism.

Lemma 2. For odd \(n \), \([\iota_n, \iota_n] \) is divisible by two if and only if it is in the image of \(d \).

Proof. It is known [3, p. 120] that \(d(\iota_{n+1}) = 2 \iota_n \) if \(n \) is odd. Since \(E: \pi_{2n-1}(S^n) \to \pi_{2n}(S^{n+1}) \) is onto and its kernel is generated by \([\iota_n, \iota_n] \) and also \(E: \pi_{2n-2}(S^{n-1}) \to \pi_{2n-1}(S^n) \) is onto, we have, for any element \(E\alpha \) in \(\pi_{2n}(S^{n+1}) \)

\[d(E\alpha) = j \circ k(E\alpha) = j \circ k(\iota_{n+1} \circ E\alpha) = 2\iota_n \circ \alpha \quad \text{by Lemma 1} \]

\[= 2\alpha. \]

If \([\iota_n, \iota_n] = 2\alpha \), for some \(\alpha \) in \(\pi_{2n-1}(S^n) \), then \(E\alpha \neq 0 \) and \(d(E\alpha) = 2\alpha \). That proves the lemma.

If \(n = 4s+1 \), \(S^n \) admits only a 1-field. Consequently [2], (i) there exists \(b \in \pi_{n-1}(O(n-1)) \) such that \(i(b) = k(\iota_n) \) and \(j(b) = \eta \) where \(\eta \) is the stable element in \(\pi_{n-1}(S^{n-2}) \) (we denote all suspensions of \(\eta \) by the same symbol), and (ii) \([\iota_n, \iota_n] = E\theta \) where \(\theta \in \pi_{2n-2}(S^{n-1}) \) is not a suspension.

Received by the editors December 13, 1965.
Consider the generalized Hopf invariant
\[H : \pi_{2n-2}(S^{n-2}) \to \pi_{2n-2}(S^{2n-6}) , \]
\[H(\eta \circ \theta) = E(\eta \# \eta) \circ H(\theta), \]
\[= \eta \circ \eta \circ H(\theta), \]
\[= \eta \circ \eta \circ \eta \neq 0 \]
because \(\theta \) is not a suspension, \(H(\theta) \neq 0 \) and hence \(H(\theta) = \eta \). Therefore \(\eta \circ \theta \neq 0 \) and \(k(E\theta) \neq 0 \) and the exactness of (A) implies that \(E\theta = [\iota_n, \iota_n] \) is not in the image of \(d = j \circ k \). This proves the Theorem.

REFERENCES

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR