ON THE HOMOGENEITY OF INFINITE PRODUCTS OF MANIFOLDS

T. GANEA

Let M be the Cartesian product of a countably infinite family of compact manifolds M_i. If every M_i has a boundary, then M is homogeneous [2]. Since a manifold without boundary is homogeneous, M is also homogeneous if none of the M_i has a boundary. It follows that M is homogeneous if none or if infinitely many of the M_i have a boundary. Answering a question raised by R. D. Anderson concerning the remaining case, we prove

Theorem. The Cartesian product of a countably infinite family of compact manifolds of which finitely many have a boundary is not homogeneous.

Since a finite product of manifolds with boundary is, in turn, a manifold with boundary, we may assume that the product contains precisely one manifold with boundary. The fact that the product is countable is irrelevant: our proof applies to any infinite (or finite) product. We assume our manifolds to be Hausdorff spaces. A space is homogeneous if for any pair of points there is a homeomorphism of the space onto itself carrying one of the points into the other. A space X is essential [1, p. 519] if it cannot be deformed into a proper subset, i.e., if any homotopy $h_t: X \rightarrow X$ with $h_0 = 1$ necessarily satisfies $h_1(X) = X$; here and throughout the paper, 1 stands for the identity map.

Lemma 1. Let X be the Cartesian product of a countable family of compact Hausdorff spaces X_i. If every finite product of spaces X_i is essential, then X itself is essential.

Proof. Suppose the contrary and let $h_t: X \rightarrow X$ satisfy $h_0 = 1$, $h_1(X) = C \neq X$. Then $U = X - C$ is a nonvoid open subset of X and, as such, contains a subset of the form $a_1 \times \cdots \times a_n \times X_{n+1} \times X_{n+2} \times \cdots$ for a sufficiently large $n \geq 1$ and suitable points $a_i \in X_i$, $1 \leq i \leq n$. Select points $b_i \in X_i$ for $i \geq n+1$, and consider the composite

$$H_t: Y \rightarrow X \rightarrow X \rightarrow Y$$

where $Y = \prod_{1 \leq i \leq n} X_i$, j embeds Y as the subset $Y \times b_{n+1} \times b_{n+2} \times \cdots$.

Received by the editors February 18, 1966.

1 This work was partially supported by NSF GP-3902.
of X, and p projects onto the first n factors. Then, $H_0 = 1$ and $H_1(Y) \subseteq p(C)$. But $a_1 \times \cdots \times a_n \notin p(C)$; for, the contrary yields a point $c = a_1 \times \cdots \times a_n \times c_{n+1} \times c_{n+2} \times \cdots \in C$ so that $c \in U$, and this is impossible since $C \cap U = \emptyset$. Thus, Y fails to be essential and the result is proved.

A point $x \in X$ is unstable [1, p. 523] if for any open neighborhood U of x in X there is a homotopy $h_t : X \to X$ with

$$h_0 = 1, \quad h_t | X - U = 1, \quad h_t(U) \subseteq U, \quad h_1(X) \neq X.$$

A point which is not unstable is called stable [1, p. 523]. We denote by \overline{U} the closure of any subset U. Also, (B^n, E^n) stands for the pair consisting of the closed unit ball and its interior in Euclidean n-space.

Lemma 2. Let M be the Cartesian product of a countable family of compact manifolds without boundary. Let X be a compact Hausdorff space and suppose $x \in X$ has an open neighborhood U such that the pair $\left(\overline{U}, U \right)$ is homeomorphic to (B^n, E^n). Then, the point $x \times m$ is stable in $X \times M$ for any $m \in M$.

Proof. Let S be the quotient space obtained from X by shrinking to a point the subset $X - U$; let $f : X \to S$ be the identification map. Suppose $x \times m$ is unstable and let $h_t : X \times M \to X \times M$ be a homotopy satisfying the conditions (1) with respect to the neighborhood $U \times M$ of $x \times m$. It is readily seen that there exists a unique homotopy H_t yielding commutativity in the diagram

$$\begin{array}{ccc}
S \times M & \xrightarrow{H_t} & S \times M \\
\uparrow f \times 1 & & \uparrow f \times 1 \\
X \times M & \xrightarrow{h_t} & X \times M
\end{array}$$

Obviously, $H_0 = 1$. There is a point $a \times b \notin h_1(X \times M)$, and it necessarily lies in $U \times M$. Hence, $f(a) \times b \notin H_1(S \times M)$ and $S \times M$ is proved to be inessential. However, S is homeomorphic to an n-sphere, any finite product of compact manifolds without boundary is a compact manifold without boundary, and any such g-dimensional manifold Q is essential since its Čech cohomology group $H^q(Q, Z_2) \neq 0$ whereas $H^q(P, Z_2) = 0$ for any closed proper subset $P \subseteq Q$. Thus, by Lemma 1, $S \times M$ is essential and Lemma 2 is proved.

Lemma 3. Let X be any space and suppose Y is completely regular. If $a \in X$ is unstable, then $a \times b$ is unstable in $X \times Y$ for any $b \in Y$.

Proof. Let W be any neighborhood of $a \times b$ in $X \times Y$; we may assume that $W = U \times V$ where U and V are open in X and Y. Let
$h_t: X \to X$ be a homotopy satisfying (1) with respect to U. Select a continuous function $r: Y \to I$ with $r(b) = 1$, $r(Y - V) = 0$. Then, $a \times b$ is readily seen to be unstable using the homotopy $H_t: X \times Y \to X \times Y$ given by $H_t(x \times y) = h_{tr(y)}(x) \times y$.

To prove the theorem, it only remains to note that an inner point of a manifold with boundary satisfies the assumption in Lemma 2, whereas a boundary point is obviously unstable. Thus, the Cartesian product discussed has both stable and unstable points, and cannot be homogeneous.

References

University of Washington