EQUIVALENCE OF TAMELY RAMIFIED v-RINGS

NICKOLAS HEEREMA

1. Introduction. Let R be a v-ring, that is, an unramified complete discrete valuation ring of characteristic zero with residue field k having characteristic $p \neq 0$. Let $R\epsilon$ and $R\epsilon'$ be totally ramified extensions of R of degree e. The symbol H represents the natural map of a local ring onto its residue field. We say that an automorphism $\tilde{\tau}$ on k lifts to an automorphism τ on $R\epsilon$, and τ induces $\tilde{\tau}$, if $H\tau = \tilde{\tau}H$. In this note we shall prove the following theorem and a number of corollaries.

Theorem 1. Assume that $(e, p) = 1$ and let π and π' be prime elements of $R\epsilon$ and $R\epsilon'$ respectively. Then we have $p = \pi^ru$ and $p = \pi'^ru'$ where u and u' are units in $R\epsilon$ and $R\epsilon'$. If $\tilde{\tau}$ is the automorphism on k induced by the isomorphism $\tau: R\epsilon \rightarrow R\epsilon'$ then $H(u'^{-1})\tilde{\tau}H(u)$ has an eth root in k. Conversely, if $\tilde{\tau}$ is an automorphism on k such that $H(u'^{-1})\tilde{\tau}H(u)$ has an eth root in k then there exists an isomorphism τ of $R\epsilon$ onto $R\epsilon'$ such that τ induces $\tilde{\tau}$. Moreover, τ can be chosen so that $\tau(R) = R$.

We shall discuss a number of corollaries of Theorem 1 and defer the proof of the theorem.

Corollary 1. An automorphism $\tilde{\tau}$ on k lifts to an automorphism of $R\epsilon$ if and only if $H(u)^{-1}\tilde{\tau}H(u)$ has an eth root in k.

Corollary 2. If the automorphism $\tilde{\tau}$ on k lifts to an isomorphism τ of $R\epsilon$ onto $R\epsilon'$ then $\tilde{\tau}$ lifts to an isomorphism of $R\epsilon$ onto $R\epsilon'$ which maps R onto itself.

Let G denote the automorphism group of $R\epsilon$ with identity mapping e. Let

$$G_t = \{ \alpha \mid \alpha \in G, \alpha - e(R\epsilon) \subseteq \Pi^tR\epsilon \}$$

and

$$H_t = \{ \alpha \mid \alpha \in G_t, \alpha - e(\Pi) \subseteq \Pi^{t+1}R\epsilon \}.$$

It is well known and not difficult to show that if $(e, p) = 1$ then $H_t = G_t$ for $t > 1$. Thus, in this case we have the extended chain of ramification groups

Received by the editors July 24, 1965.

1 This research was supported by NSF GP-4007.
All the factors of (1) save G/G_1 are evaluated in [1, Theorem 5]. Also, see [3, Theorem 6 and Corollary]. As an immediate consequence of Corollary 1 we have

Corollary 3. The group G/G_1 is isomorphic to the group of all automorphisms $\tilde{\tau}$ on k such that $H(u)^{-1}\tilde{\tau}H(u)$ has an eth root in k.

It was shown in the middle thirties (for a discussion, see MacLane [3, p. 423]) that an unramified ν-ring is determined by its residue field. A long standing question has been the following—can one characterize the isomorphically distinct rings \mathcal{R}_e in terms of the structure of the residue field k and if so, how? In the tamely ramified case, $(e, p) = 1$, the answer is yes and the solution is given by [1, Theorem 3] in the case in which k is perfect. Corollary 4 below yields the same conclusion without restriction on k.

As in [1, p. 495] we consider the equivalence relation “\sim_e” on k^*, the nonzero elements of k, in which $a \sim_e b$ if there is an automorphism $\tilde{\tau}$ on k such that $a^{-1}\tilde{\tau}(b)$ is in k^e, the set of eth powers in k^*. Let $[a]$ represent the equivalence class containing a and let E be the set of all classes $[a]$.

Corollary 4. The rings \mathcal{R}_e and $\mathcal{R}_{e'}$ of Theorem 1 are isomorphic if and only if $[H(u)] = [H(u')]$, thus the mapping $\mathcal{R}_e \to [H(u)]$ induces a one to one correspondence between classes of isomorphic rings \mathcal{R}_e and E.

Proof. The first sentence follows immediately from Theorem 1. Thus the mapping $\mathcal{R}_e \to [H(u)]$ is well defined, a fact which can be observed directly. Given $a \in k^*$ choose u in R such that $H(u) = a$. Thus $\mathcal{R}_e = R(\pi)$, where π is a root of $x^e - pu$, maps onto $[a]$. Thus the induced mapping is onto.

II. Proof of Theorem 1.

Lemma 1. Let \mathcal{R}_e and $\mathcal{R}_{e'}$ be tamely ramified extensions of R and let $\tau: \mathcal{R}_e \to \mathcal{R}_{e'}$ be an isomorphism which induces the automorphism $\tilde{\tau}$ on the residue field k. Then there exists an isomorphism $\eta: \mathcal{R}_e \to \mathcal{R}_{e'}$ such that $\eta(R) = R$ and $\eta = \tilde{\tau}$.

Proof. Since every automorphism on k lifts to R there is an automorphism α on R such that $\alpha = \tilde{\tau}^{-1}$. Then $\tau\alpha: R \to \mathcal{R}_{e'}$ has the property $\tau\alpha - \epsilon(R) \subseteq \pi' \mathcal{R}_{e'}$. Thus, by [2, Theorem 4] $\tau\alpha$ can be extended to an automorphism β on $\mathcal{R}_{e'}$ such that $\beta - \epsilon(\mathcal{R}_{e'}) \subseteq \pi' \mathcal{R}_{e'}$. Now $\tau^{-1}\beta(R) = \tau^{-1}\tau\alpha(R) = R$. Let $\eta = \beta^{-1}\tilde{\tau}$. Then we have $\eta(R) = R$ and $\eta = \tilde{\beta}^{-1}\tilde{\tau} = \tilde{\tau}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now, let $\tau: R_e \to R'_e$ be an isomorphism. By Lemma 1 there exists an isomorphism $\eta: R_e \to R'_e$ such that $\eta(R) = R$ and $\bar{\eta} = \bar{\tau}$. It follows from Theorem 3 of [1, p. 494] that $H(u'^{-1})\bar{\tau}H(u)$ is in k^*. The converse follows immediately from the same Theorem [1, Theorem 3] and the fact that every automorphism on k lifts to R.

III. An example. Again we assume that $(e, p) = 1$.

Using product as the operation we write k_e for the group k^*/k_e. The automorphisms of k induce a group G of automorphisms on k_e. Let ϕ represent the natural map of k^* onto k_e. For x in k_e let $[x]_G$ denote the set of elements in k_e conjugate to x with respect to G. We state without proof.

Proposition 1. Let a be in k^*. The correspondence $[a] \to [\phi(a)]_G$ is a one to one correspondence between E and the classes of conjugate elements in k_e with respect to G.

We consider the case in which $k = GF(p^r)$, the field with p^r elements. Let $n = (e, p^r - 1)$. Then for any b in k^*, $a \sim b$ if and only if $a \sim_n b$. Also k_e is the cyclic group of order n. Since all elements in a given conjugate class have the same order it follows that the number of conjugate classes is

$$\sum_{q|n} \frac{\varphi(q)}{I(q)}$$

where φ is the Euler φ function and $I(q)$ is the least positive integer s such that $q \mid p^s - 1$. We also require that $\varphi(1) = I(1) = 1$. Thus, if $N(e, k)$ is the number of isomorphically distinct rings R_e with residue field k, we have,

$$N(e, GF(p^r)) = \sum_{q|n} \frac{\varphi(q)}{I(q)}.$$

In particular, if $(e, p^r - 1) = 1$, $N(e, GF(p^r)) = 1$, and if $(e, p^r - 1) \mid p - 1$

$$N(e, GF(p^r)) = \sum_{q|n} \varphi(q).$$

Finally we note that the automorphisms on k which lift to R_e in the tamely ramified case are exactly those automorphisms α such that $\phi H(u)$ is left fixed by the mapping α induces on k_e. Thus every automorphism on $GF(p^r)$ lifts to R_e if and only if $(e, p^r - 1) \mid p - 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
References

3. S. MacLane, Subfields and automorphism groups of p-adic fields, Ann. of Math. 40 (1939), 423–442.

Florida State University