A CHARACTERIZATION OF UNIONS OF TWO STAR-SHAPED SETS

C. F. KOCH AND J. M. MARR

We shall use the notation $S(x)$ to denote the star of x in M, that is, the set of all points $y \in M$ such that the segment xy is contained in M. The star (in M) of a set A is defined by $S(A) = \bigcup_{x \in A \cap M} S(x)$. We use the terminology "the point x sees the point y" to mean the closed segment xy is contained in M.

Let M be a closed set in E_r. Suppose there exists a line segment S_1 such that each triple of points x, y, z in M determines at least one point $p \in S_1$ such that at least two of the points x, y, z see the point p via M. Valentine [1, Problem 6.6, p. 178] has conjectured that this property characterizes M as the union of at most two star-shaped sets. That this condition is necessary follows immediately by choosing S_1 to be any line segment which intersects the kernels of the two star-shaped sets. A further property which is enjoyed by every union of two star-shaped sets is the following.

CONDITION A. If $S_1 = \bigcup_{i=1}^{m} I_i$ where the I_i are closed intervals with at most end points in common, then of the intervals I_i there is at least one pair (say I_j and I_k) such that at least two of every triple of points of M, see a common point of $I_j \cup I_k$ via M.

If it is true that of each triple of points of M at least two of them see a common point of a single interval (say I_r), then the pair I_r and I_s where $I_s = I_r$ satisfies the conclusion of condition A. The reader will note that if $m = 2$, then Condition A implies Valentine's property.

Next we note that a set M satisfying either Valentine's property or Condition A consists of at most two components, for if M had as many as three components the selection of a point from each of the components would violate Valentine's condition. In the two component case Valentine's condition can be stated as follows. If x and y are in the same component of M, then there exists a point $p \in S_1$ such that the segments xp and yp are contained in M. But then an application of a generalization of Krasnosel'skii's theorem [1, Theorem 6.18, p. 85] tells us that each component is star-shaped. Before proceeding with the case in which M is connected we prove the following lemma.

Lemma. Suppose M is connected and A is a compact subset of S_1 such

Received by the editors January 25, 1966 and, in revised form, April 15, 1966.

1341
that for each three distinct points \(x, y, z \) of \(M \) at least two of these points see a common point \(p \) of \(A \). Then \(M = S(A) \).

Proof. Let \(q \in M \). Since \(M \) is connected, there exist sequences \(\{x_n\} \) and \(\{y_n\} \) which converge to \(q \) and such that for each \(n \), the points \(x_n, y_n \) and \(q \) are distinct. The hypothesis implies that, for each \(n \), at least one of the points \(x_n \) or \(y_n \) sees a point \(p_n \in A \). Since \(A \) is compact, a subsequence \(\{p'_n\} \) of \(\{p_n\} \) can be found which converges to \(p_0 \in A \) together with a corresponding subsequence (say \(\{x'_n\} \)) of one of the sequences \(\{x_n\} \) or \(\{y_n\} \) such that \(x'_n p'_n \subset M \). Then every point of \(q p_0 \) is a limit point of points on the segments \(x'_n p'_n \), and since \(M \) is closed, \(q p_0 \subset M \). Thus \(M = S(A) \).

Theorem. Let \(M \) be a closed subset of \(E_r \) which satisfies Condition A with respect to a line segment \(S_1 \). Then \(M \) is the union of at most two star-shaped sets.

Proof. Assume that \(M \) is connected since the case where \(M \) consists of two components has already been discussed. For each positive integer \(k \), divide \(S_1 \) into \(2^k \) closed subintervals \(I_j \) \((j = 1, 2, \ldots, 2^k)\) of equal length and with at most end points in common. Then Condition A guarantees the existence of a pair of these intervals \(I_r \) and \(I_s \) such that at least two of every triple of points of \(M \) see a common point of \(I_r \cup I_s \) via \(M \). If for any \(k \), it is possible to choose a pair \(I_r \) and \(I_s \) with \(I_r = I_s \) and still preserve this property, we do so. By the lemma, \(M = S(I_r) \cup S(I_s) \). Then for each \(k \), define \(I_r = I_k \) and \(I_s = J_k \). It follows that for each \(k \), \(M = S(I_k) \cup S(J_k) \).

For each \(k \), select points \(x_k \in I_k \) and \(y_k \in J_k \). Since \(S_1 \) is compact, we select subsequences \(\{x_n\} \) of \(\{x_k\} \) and \(\{y_n\} \) of \(\{y_k\} \) which converge to \(x_0 \in S_1 \) and \(y_0 \in S_1 \) respectively.

We now show \(M = S(x_0) \cup S(y_0) \). Let \(p \) be an arbitrary point of \(M \). By the lemma and the definitions of \(I_n \) and \(J_n \), \(p \) sees a point \(z_n \in I_n \cup J_n \) for each \(n \). Without loss of generality we may assume that \(p \) sees \(z_n \in I_n \) for infinitely many \(n \). Let \(\epsilon \) be any positive number and define \(U \) and \(V \) to be the respective intersections of \(S_1 \) with \(\epsilon \) and \(\epsilon/2 \) spherical neighborhoods of \(x_0 \). Since \(\{x_n\} \) converges to \(x_0 \), there exists an integer \(N_1 \) such that if \(n > N_1 \), \(x_n \in V \). We select the integer \(N_2 \) such that if \(n > N_2 \), the length of \(I_n \) is less than \(\epsilon/2 \). Then for infinitely many \(n > \max(N_1, N_2) \), \(I_n \subset U \) and \(p z_n \subset M \). Since \(p \) sees a point in every neighborhood of \(x_0 \) and \(M \) is closed, the segment \(px_0 \subset M \). Thus each point of \(M \) sees at least one of the points \(x_0 \) or \(y_0 \) via a segment in \(M \). If for every \(n \), \(I_n = J_n \), then \(x_0 = y_0 \) and \(M \) is star-shaped. If \(x_0 \neq y_0 \), then \(M \) is the union of two star-shaped sets. Thus the proof is complete.
The following example shows that the assumption that M is closed cannot be deleted. Consider the union of two disjoint closed discs in the plane together with the segment joining their centers. From each disc delete all the points of a diameter not parallel to the line of centers excepting the end points and the center itself. The set described is M and S_1 is the intersection of the line of centers with M. Then M is not closed, satisfies Valentine's condition and Condition A, but it is not the union of two star-shaped sets.

Reference

Kansas State University