ON AN EXAMPLE IN SECOND ORDER LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

D. WILLETT

Let \(b(t) \) be a given positive nondecreasing continuous function on
the set \(t \geq 0 \). In this note we will prove the following result:

Theorem. There exists a positive continuously differentiable function
\(a(t) \) such that \(a'(t) \geq b(t) \) and the differential equation

\[
(1) \quad x'' + a(t)x = 0 \quad t \geq 0 \quad \left(' = \frac{d}{dt} \right),
\]

has at least one solution \(x = x(t) \) such that

\[
(2) \quad \limsup_{t \to \infty} |x(t)| > 0.
\]

The above theorem generalizes the examples given by Milloux [4],
Hartman [3], and Galbraith, McShane, and Parrish [2], whose
methods do not necessarily produce a function \(a(t) \) with \(a'(t) \geq b(t) \),
if \(b(t) \) is taken of sufficiently large order as \(t \to \infty \). Such examples are
of interest in regard to the converse problem, i.e., what conditions
besides \(a(t) \to \infty \) as \(t \to \infty \) need to be assumed in order to know that all
solutions of (1) satisfy \(x(t) \to 0 \) as \(t \to \infty \). The book by Cesari [1, pp.
84–86] has a good discussion of this problem. Willett, Wong, and
Meir [5] list some new results in this direction. We take the occasion
to point out that in [1, p. 86] Sansone’s sufficient condition there
reported should read, “If \(a(t) \) is positive, nondecreasing, with a con-
tinuous derivative in \([t_0, + \infty]\), if \(a'(t) \to \infty \), and \(\int^{+\infty} a^{-1}(t)dt = \infty \),
then for every solution \(x(t) \) of (1) we have \(x(t) \to 0 \) as \(t \to +\infty \).” This
corrects a misprint in [1, p. 86] (where “\(= + \infty \)” was printed
as “\(< \infty \)”).

In order to prove our main theorem, we will need the simple prop-
erties of solutions to (1) stated in the following lemma.

Lemma. Let \(x(t) \) be any solution of (1) for a given continuous \(a(t) \),
and let \(\mu \) and \(T \) be positive numbers such that \(a(t) \geq \mu^2 \) for all \(t \) in \([0, T]\).
Then \(x' \) has finitely many zeroes in \([0, T]\), and if \(t_0 < t_1 < \cdots < t_n \) are
those zeroes then \(0 < t_k - t_{k-1} \leq 2\pi \mu^{-1} \) \((k = 1, 2, \cdots, n)\).

Proof. By the Sturm Comparison Theorem, for any solution \(x(t) \)

Presented to the Society, December 2, 1965; received by the editors January 3,
1966.
of (1), \(x(t) \) has a finite number of zeroes in the interval \(0 \leq t \leq T \). If \(\tau_1 \) and \(\tau_2 \) are successive zeroes, then \(\tau_2 - \tau_1 \leq \pi \mu^{-1} \). Now between \(\tau_1 \) and \(\tau_2 \), \(x(t) \) is either always positive or always negative. Hence, since \(x''(t) = -a(t)x(t) \), \(x \) is either strictly concave or strictly convex for \(\tau_1 \leq t \leq \tau_2 \), and so \(x \) has exactly one critical point between \(\tau_1 \) and \(\tau_2 \). Clearly the lemma follows.

\textbf{Proof of the Theorem.} Let

\[a_1(t) = 4\pi^2 + \int_0^t b(s)ds \]

for \(t \) in \([0, t_1]\), where \(t_1 \) is such that \(\frac{1}{2} \leq t_1 \leq 1 \) and \(x_1'(t_1) = 0 \) for \(x_1(t) \) the unique solution to

\[x_1'' + a_1(t)x_1 = 0, \quad x_1(0) = x_0 > 0, \quad x_1'(0) = 0. \]

By the lemma, such a point \(t_1 \) must exist. For \(t > t_1 \) define \(a_1(t) = x_1(t) = 0 \). Finally, let \(0 < \epsilon_k < 1 \) be a given sequence of numbers such that \(x_1^2(t_k) \geq (1 - \epsilon_k)x_0^2 \) and \(\sum_{n=1}^{\infty} \epsilon_n < \infty \).

The proof of the theorem is inductive in nature. Suppose that a set of numbers \(0 = t_0 < t_1 < \cdots < t_{n-1} \) such that

\[\frac{1}{2} \leq t_k - t_{k-1} \leq 1 \quad (k = 1, 2, \cdots, n - 1) \]

and a set of functions \(a_k(t), x_k(t) \) \((k = 1, 2, \cdots, n - 1)\) have been determined so that the following holds \((k = 1, 2, \cdots, n - 1)\):

\[x_k'' + a_k(t)x_k = 0 \quad \text{and} \quad a_k'(t) \geq b(t) \quad \text{for} \quad t \in [t_{k-1}, t_k], \]

\(x_k(t) = a_k(t) = 0 \) for \(t \in [t_{k-1}, t_k] \),

\[x_k(t_{k-1}) = x_{k-1}(t_{k-1}), \quad x_k'(t_{k-1}) = x_k'(t_k) = 0, \]

\[a_k(t_{k-1}) = a_{k-1}(t_{k-1}), \quad a_k'(t_{k-1}) = b(t_{k-1}), \quad a_k'(t_k) = b(t_k). \]

Suppose also that

\[x_k^2(t_k) \geq (1 - \epsilon_k)x_k^2(t_{k-1}) \quad (k = 1, 2, \cdots, n - 1). \]

If we can obtain by induction a sequence of points \(\{t_k\} \) and functions \(\{a_k(t)\} \) and \(\{x_k(t)\} \) satisfying (3), (4), and (5), the theorem will follow by taking

\[a(t) = \sum_{k=1}^{\infty} a_k(t) \quad \text{and} \quad x(t) = \sum_{k=1}^{\infty} x_k(t). \]

From (5) we obtain

\[x^2(t_k) \geq (1 - \epsilon_k)x^2(t_{k-1}) \geq \prod_{j=1}^{k} (1 - \epsilon_j)x_0^2 \quad (k = 1, 2, \cdots). \]
Since \(t_k \to \infty \) as \(k \to \infty \) and \(\sum_{j=1}^{\infty} \epsilon_j < \infty \),

\[
\limsup_{t \to \infty} x^2(t) \geq \prod_{j=1}^{\infty} (1 - \epsilon_j)x_0^2 > 0.
\]

Thus, we have to show the existence of a point \(t_n \) and functions \(a_n(t) \) and \(x_n(t) \) such that (3), (4), and (5) hold with \(k = n \). Let \(\alpha \) be any positive number satisfying \(\alpha > a_{n-1}(t_{n-1}) + b(1 + t_{n-1}) \) and \(\alpha > (\epsilon_{n-1} - 1)b(1 + t_{n-1}) \). For \(\alpha \) fixed, let \(s_n \) be any number satisfying \(0 < s_n - t_{n-1} < \frac{1}{2} \) and

\[
s_n - t_{n-1} < \left\{ \frac{2}{\alpha} \left[1 - (1 - \epsilon_n)^{1/2}(1 + \alpha^{-1}b(1 + t_{n-1}))^{1/2} \right] \right\}^{1/2}.
\]

Finally, let

\[
a_n(t) = \int_{t_{n-1}}^{t} b(\tau) \, d\tau + \frac{1}{2} \left(\alpha - \int_{t_{n-1}}^{s_n} b(\tau) \, d\tau \right) \left(1 - \cos \pi \frac{t - t_{n-1}}{s_n - t_{n-1}} \right)
+ \frac{1}{2} a_{n-1}(t_{n-1}) \left(1 + \cos \pi \frac{t - t_{n-1}}{s_n - t_{n-1}} \right)
\]

for \(t_{n-1} \leq t \leq s_n \), and let

\[
a_n(t) = \alpha + \int_{s_n}^{t} b(\tau) \, d\tau
\]

for \(s_n \leq t \leq t_n \). Here, \(t_n \) is any point such that \(\frac{1}{2} \leq t_n - t_{n-1} \leq 1 \) and \(x_n'(t_n) = 0 \) for \(x_n(t) \) defined on \([t_{n-1}, t_n]\) to be the solution of

\[
x_n'' + a_n(t)x_n = 0, \quad x_n(t_{n-1}) = x_{n-1}(t_{n-1}), \quad x_n'(t_{n-1}) = 0.
\]

By the lemma, such a point \(t_n \) must exist. Let \(x_n(t) = a_n(t) = 0 \) for \(t \) not in \([t_{n-1}, t_n]\). It is easy to verify that \(a_n(t) \) is a continuously differentiable function on \([t_{n-1}, t_n]\), and that \(a_n(t) \) and \(x_n(t) \) satisfy (4) with \(k = n \).

We will now prove that \(x_n(t) \) satisfies (5) with \(k = n \). For the sake of brevity in what follows, let \(x = x_n \) and \(a = a_n \). Since \(x'(t_{n-1}) = 0 \), by Taylor's Theorem we obtain

\[
x(s_n) - x(t_{n-1}) = \frac{1}{2}(s_n - t_{n-1})^2 x''(c) \quad (t_{n-1} < c < s_n).
\]

Because \(a' \geq 0 \), the set of maxima of \(|x(t)| \) are decreasing; hence

\[
|x''(c)| = a(c) \cdot x(c) \leq a(s_n) \cdot x(t_{n-1})|.
\]

So

\[
x(s_n) \geq \left[1 - \frac{1}{2}(s_n - t_{n-1})^2 a(s_n) \right] x(t_{n-1})|.
\]
In order to estimate $|x(t_n)|$, we integrate $x'x'' + axx' = 0$ by parts to obtain

$$a(t_n)x^2(t_n) = [x'(s_n)]^2 + a(s_n)x^2(s_n) + \int_{t_n}^{t_{n+1}} a'(t)[x(t)]^2 dt.$$

Hence

$$x^2(t_n) \geq \frac{a(s_n)}{a(t_n)} x^2(s_n) \geq \frac{x^2(s_n)}{1 + \alpha^{-1}b(1 + t_{n-1})},$$

since $a(s_n) = \alpha$ and

$$a(t_n) - \alpha = \int_{s_n}^{t_n} b(t) dt \leq b(t_n)(t_n - s_n) \leq b(1 + t_{n-1}).$$

Combining (7) and (8), we obtain

$$x^2(t_n) \geq \frac{[1 - \frac{1}{2}(s_n - t_{n-1})^2\alpha]^2}{1 + \alpha^{-1}b(1 + t_{n-1})} x^2(t_{n-1}).$$

But from (6) it follows that

$$\frac{[1 - \frac{1}{2}(s_n - t_{n-1})^2\alpha]^2}{1 + \alpha^{-1}b(1 + t_{n-1})} > 1 - \epsilon_n.$$

Hence, $x^2(t_n) \geq (1 - \epsilon_n)x^2(t_{n-1})$, and the theorem follows.

References

4. H. Milloux, Sur l'équation différentielle $x'' + A(t)x = 0$, Prace Mat. 41 (1934), 39–53.

University of Alberta, Canada