A GENERALIZATION OF A COMMUTATOR THEOREM OF MIKUSINSKI

E. C. PAIGE

1. Introduction. In a series of papers [4]–[6] Mikusinski and Sikorski considered the following problem. Let V be a vector space over a field of characteristic 0 and let D be a locally algebraic linear transformation of V (i.e., given any x in V there is a polynomial $f(\lambda) \neq 0$ over F with $xf(D) = 0$). If $A = F[\lambda]$ is the polynomial ring in one variable over F, V becomes an A-module under the definition $xf(\lambda) = xf(D)$ for x in V, $f(\lambda)$ in A. The Mikusinski-Sikorski hypotheses on V and D can be phrased as follows.

I. If $f(\lambda) \in A$ has degree $n \geq 1$, the kernel of $f(D)$ has dimension $\leq n$.

II. If $f(\lambda)$, $g(\lambda)$ in A have positive degrees and if the dimensions of $\text{Ker } f(D)$ and $\text{Ker } g(D)$ are m and n respectively, the dimension of $\text{Ker } f(D)g(D)$ is $m + n$.

Mikusinski and Sikorski [5], [6] then proved the

Theorem. If D is a locally algebraic linear transformation of V satisfying I and II, there is a linear transformation T of V with $TD - DT = I$, the identity transformation of V.

Mikusinski [4] also demonstrated a converse; namely he proved the

Theorem. If D is a locally algebraic linear transformation of V satisfying condition I and if there is a linear transformation T of V with $TD - DT = I$ then condition II is satisfied.

The generalizations treated in this paper may be formulated as follows. Let D be a locally algebraic linear transformation of V; instead of the conditions listed above, the assumption will be

III. V is a divisible A-module (i.e., given y in V and $f(\lambda) \neq 0$ in $A = F[\lambda]$ there is an x in V with $xf(\lambda) = xf(D) = y$).

The first theorem may be stated as

Theorem 1. If D is a locally algebraic linear transformation of V satisfying condition III, then a linear transformation, T, of V exists with $TD - DT = I$.

The converse result established is

Theorem 2. If D is a locally algebraic linear transformation on V
over F of characteristic 0 and if a linear transformation, T, of V exists with $TD - DT = I$, then condition III is satisfied.

The characteristic 0 hypothesis cannot be omitted in Theorem 2 as will be shown by an example due to A. A. Albert. It will be shown that these results imply a generalization of the Mikusinski-Sikorski results and that this generalization implies one obtained by Mr. James Geer in a Master's thesis [2] at the University of Virginia. The author expresses his appreciation to Professor M. Rosenblum for calling this problem to his attention.

2. Sufficiency of the condition III. As usual the A-module V will be termed a primary A-module if there is an irreducible element $p = p(\lambda)$ of A such that every element of V is in the kernel of $(p(D))^k$ for some k. The following lemmas are well known [3] but are included for convenience.

Lemma 1. If D is a locally algebraic linear transformation of V, then V is the (weak) direct sum of primary A-modules.

Lemma 2. A direct sum of A-modules is divisible if and only if each summand is divisible.

Now if V_p is a primary component of V and if T_p is a linear transformation on V_p satisfying $[T_p, D] = T_pD - DT_p = I$ on V_p, then the direct sum $T = \sum_p T_p$ of the T_p for p ranging over the irreducible polynomials of A clearly satisfies $[T, D] = I$ on V.

The previous remark and Lemmas 1 and 2 clearly reduce the problem to the case in which V is a primary divisible A-module for the prime p of A, and this hypothesis is maintained for the remainder of this section.

For each integer $k \geq 1$ let

$$V_k = \{ x \in V : x(p(D))^k = 0 \}$$

so that V_k is the kernel of $(p(D))^k$, is an A-submodule of V (i.e., is a D-invariant subspace of V), and satisfies $V_k \subseteq V_{k+1}$, $V_{k+1}(p(D)) \subseteq V_k$, and $\bigcup_{k=1}^\infty V_k = V$.

Lemma 3. If V is a primary divisible A-module for the prime polynomial $p(\lambda)$ of degree $m \geq 1$, there is a basis $\{ x(\alpha, k)D^j \}_{a,j,k}$ of V where α ranges over some index set, and $0 \leq j \leq m - 1$ and $k \geq 1$ is an integer.

Since $x p = x p(D) = 0$ for all $x \in V_1$, V_1 is a vector space over the field $K = F[\lambda]/(p(\lambda))$ and as such has a basis $\{ x_\alpha \}_\alpha$ over K. Now $1, \lambda, \cdots, \lambda^{m+1}$ modulo $p(\lambda)$ form a basis for K over F and so well known
vector space arguments show \(\{x_\alpha \lambda^j\}_{\alpha, j} \) to be a basis of \(V_1 \) over \(F \). Now \(x_\alpha \lambda^j = x_\alpha D^j \) and so \(\{x_\alpha D^j\}_{\alpha, j} \) is a basis of \(V_1 \) over \(F \). To simplify the notation write \(x_\alpha = x_\alpha (\alpha, 1) \) and choose inductively (by the divisibility hypothesis) \(x(\alpha, k+1) \) in \(V_{k+1} \) with \(x(\alpha, k+1) p(D) = x(\alpha, k) \).

The vectors \(\{x(\alpha, k) D^j\}_{\alpha, j, k} \) are linearly independent over \(F \). For if

\[
\sum_{\alpha} \sum_{k=1}^{n+1} \sum_{j=0}^{m-1} \beta(\alpha, k, j) x(\alpha, k) D^j = 0
\]

apply \(p(D)^n \) to (2) to obtain

\[
\sum_{\alpha} \sum_{j=0}^{m-1} \beta(\alpha, n+1, j) x(\alpha, 1) D^j = 0.
\]

By the choice of \(x(\alpha, 1) \), relation (3) yields \(\beta(\alpha, n+1, j) = 0 \) and an obvious induction establishes that all \(\beta(\alpha, k, j) = 0 \). To see that the chosen vectors span \(V \), the argument proceeds from \(V_k \) to \(V_{k+1} \). In order to avoid an excessive amount of notation the step from \(V_1 \) to \(V_2 \) will be indicated. If \(x \in V_2 \), \(x p \in V_1 \) so that \(x p = \sum_{\alpha, j} \beta(\alpha, j) x(\alpha, 1) D^j \); let \(y = \sum_{\alpha, j} \beta(\alpha, j) x(\alpha, 2) D^j \) and observe that \(z = x - y \) lies in \(V_1 \) since \(y p = x p \). Thus \(z = \sum_{\alpha, j} \gamma(\alpha, j) x(\alpha, 1) D^j \) and \(x = y + z = \sum_{\alpha, j} \beta(\alpha, j) x(\alpha, 2) D^j + \sum_{\alpha, j} \gamma(\alpha, j) x(\alpha, 1) D^j \).

To conclude the proof of Theorem 1, \(T \) is explicitly constructed in terms of the basis \(\{x(\alpha, k) D^j\} \) of Lemma 3. Define

\[
\begin{align*}
x(\alpha, k) T &= x(\alpha, k + 1), \\
x(\alpha, k) DT &= x(\alpha, k + 1) D - x(\alpha, k), \\
x(\alpha, k) D^2 T &= x(\alpha, k + 1) D^2 - 2x(\alpha, k) D, \\
&\vdots \\
x(\alpha, k) D^{m-1} T &= x(\alpha, k + 1) D^{m-1} - (m - 1)x(\alpha, k) D^{m-2}.
\end{align*}
\]

It only remains to establish \([T, D] = I \). The calculation is as follows:

\[
x(\alpha, k) D^j T D = [x(\alpha, k + 1) D^j - jx(\alpha, k) D^{j-1}] D
\]

\[
= x(\alpha, k + 1) D^{j+1} - jx(\alpha, k) D^j
\]

and

\[
x(\alpha, k) D^j (DT) = x(\alpha, k + 1) D^{j+1} - (j + 1)x(\alpha, k) D^j.
\]

Upon differencing these two results one obtains

\[
x(\alpha, k) D^j (TD - DT) = x(\alpha, k) D^j
\]

which is exactly the desired result. It should be remarked that these
calculations are valid when \(j = m - 1 \) since in this case \(D^{j+1} = D^m \) is expressible as a linear combination of lower powers of \(D \).

3. **Necessity for characteristic zero.** In this section \(F \) will designate a field of characteristic 0 and \(V \) will be a vector space over \(F \) with two linear transformations, \(D \) and \(T \), satisfying \([T, D] = I \). Moreover it is assumed that \(V \) is locally algebraic with respect to \(D \). Again the problem is reduced to the primary case by Lemmas 1 and 2, but it is necessary to show that the primary components of \(V \) are invariant under \(T \) before the reduction can be made.

Lemma 4. Let \(D, T \) be linear transformations of \(V \) satisfying \([T, D] = I \). For any polynomial \(f(\lambda) \) in \(F[\lambda] = A \)

\[
TD^k = D^kT + kD^{k-1},
\]

\[
Tf(D) = f(D)T + f'(D)
\]

where \(f'(\lambda) \) designates the usual derivative of \(f(\lambda) \). Furthermore, if \(V_p \) is a primary component of \(V \) (relative to \(D \)) then \(V_p \) is \(T \)-invariant.

The first relation in (5) is readily established by induction and the second is an immediate consequence thereof. To see that \(V_p \) is \(T \) invariant observe first that \(V_p \) is \(D \)-invariant. Then for any \(x \in V_p \) let \(x(p(D)) = 0 \) and note \((xT)(p(D))^r = x(p(D))^rT + x(p(D))^rD^k \)

\[
= x(p(D))^rT + rx(p(D))^{-1}p'(D) \]

which lies in \(V_p \). For the remainder of this section it is assumed that \(V \) is a primary \(A \)-module such that \([T, D] = I \). Define the subspaces \(V_k \) by (1) again. Then the following lemma holds [3].

Lemma 5. If every \(y \) in \(V_1 \) has the property that for each integer \(k \geq 1 \), there is an \(x \) in \(V \) with \(y = x(p(D))^k \) then \(V \) is divisible.

To simplify the following calculations, the notation \(xf, xTf, T^k f \), etc., is used in lieu of \(x(f(D)), xTf(D), T^k f(D) \), etc. There are several steps which culminate with the verification of the hypothesis of Lemma 5. These steps are listed below where \((f, g) = 1 \) signifies as usual that the polynomials \(f(\lambda) \) and \(g(\lambda) \) are relatively prime.

(a) If \((f, p) = 1 \) and \(y \in V \) there is an \(x \in V \) with \(y = xf \). For if \(y \in V_k \) write \(fg +_hp^k = 1 \) so that \(yfg + yp^k = y \); the desired conclusion follows with the choice \(x = yg \).

(b) If \(y \in V_k, yf = zp^n \) where \((f, p) = 1 \) then there is an \(x \in V \) with \(y = xp^n \). Again write \(fg + p^k = 1 \) so that \(zg = zp^n = yp^k = y[1 - p^k] = y - yp^k = y \). For the choice \(x = zg \) the conclusion \(xp^n = y \) follows.
(c) An easy induction establishes the commutativity relation

\[T^m f = \sum_{k=0}^{m} \binom{m}{k} f^{(k)} T^{m-k} \]

where \(f^{(k)} \) designates the \(k \)th derivative of \(f \).

(d) The following known result is easily established by induction.

\[(p^n)^{(k)} = n(n-1) \cdots (n-k+1) p^{n-k} (p')^k + p^{n-k+1} f_k(p, p', \ldots, p^{(k)}) \]

where \(f_k(p, p', \ldots, p^{(k)}) \) is an integral polynomial in \(p, p', \ldots, p^{(k)} \).

(e) For each \(y \) in \(V_1 \) there is \(x \) in \(V \) with \(y = xp^n \). For let \(z = y T^n \) and compute

\[zp^n = y T^n p^n = y \sum_{k=0}^{n} \binom{n}{k} (p^n)^{(k)} T^{n-k} \]

by (c). By (d) above

\[y(p^n)^{(k)} = y \left[k! \binom{n}{k} p^{n-k} (p')^k + p^{n-k+1} f_k(p, p', \ldots, p^{(k)}) \right] = 0 \]

for \(k < n \) since \(yp = 0 \). Thus

\[zp^n = y(p^n)^{(n)} = y \left[n!(p')^n + p f_n(p, p', \ldots, p^{(n)}) \right] = y[n!(p')^n] \]

Since the field is of characteristic 0, the irreducibility of \(p(\lambda) \) ensures \((p, p') = 1 \); also \(n! \not\equiv 0 \) in \(F \) and so \((n! p', p) = 1 \) and the conclusion follows immediately from (b). The hypothesis of Lemma 5 has been established and the proof of Theorem 2 is complete.

A counterexample for finite characteristic is readily given. For example if \(F = GF(3) \) and \(V \) has basis \(x_1, x_2, x_3 \) over \(F \) define \(T \) by \(x_1 T = x_2, x_2 T = x_3, x_3 T = 0 \) and \(D \) by \(x_1 D = 0, x_2 D = x_1 \) and \(x_3 D = 2x_2 \).

An easy check shows \(TD - DT = I \) and \(D \) is surely singular. It is clear that if \(V \) were divisible as an \(A \)-module, \(D \) would have to map \(V \) onto itself and so \(V \) cannot be divisible. Closely related to these results is a result of Albert and Muckenhoupt [1] which states that if \(S \) is a linear transformation of the finite dimensional vector space \(V \) over \(F \) it is a commutator, i.e., \(S = TU - UT \) for linear transformations \(U, T \) of \(V \) if and only if Trace \(S = 0 \).

4. Results of Mikusinski and Geer. In [2] Mr. Geer gave a generalization of Mikusinski's result. Using Theorem 1 it is easy to prove a result which includes both of their results and is stated as
Theorem 3. Let D be a locally algebraic linear operator on V satisfying
\((i)\) for each irreducible $p(\lambda)$ in A the kernel of $p(D)$ is finite dimensional,
\((ii)\) for each irreducible $p(\lambda)$, $\dim \ker p^n = n(\dim \ker p)$. Then a linear operator T on V exists with $[T, D] = I$.

The only hypothesis of Theorem 1 that must be verified is the divisibility condition and by Lemmas 1 and 2 it suffices to verify this condition for each primary component of V. Obviously the restriction of D to a primary component also satisfies (i) and (ii) and so it may be assumed that V is primary for some prime $p = p(\lambda)$. The subspaces V_k are again defined by (1) so that $V_{k+1} \subset V_k$ and the kernel of $p(D)|_{V_{k+1}}$ is clearly V_1 so V_{k+1}/V_1 is A-isomorphic to V_k/p. Thus $\dim V_{k+1} - \dim V_1 = \dim V_k$ but by (ii) $\dim V_{k+1} = (k+1)(\dim V_1)$ and so $\dim V_{k+1} = k(\dim V_1)$ which is $\dim V_k$ by (ii). Therefore, $V_{k+1} \subset V_k$ together with the dimension count given shows $V_{k+1} = V_k$ and the condition of Lemma 5 is verified and V is divisible as desired.

For completeness the converse of Mikusinski is deduced from Theorem 2 in the following form.

Theorem 4. Let D be a linear operator on the vector space V over the field F of characteristic 0 such that D is locally algebraic on V. Suppose that for each irreducible $p(\lambda)$ in $A = F[\lambda]$, $\dim \ker p$ is finite and suppose that a linear operator T of V exists with $[T, D] = I$, then condition II is satisfied and $\dim \ker p(\lambda)$ is finite for every λ of positive degree.

By Theorem 2, V must be a divisible A-module and so is each primary component of V by Lemmas 1 and 2. If S is a primary component, let $S_k = \ker p^k$ so that the divisibility property of S ensures $S_{k+1}p = S_k$. Since $\ker p(D)|_{S_{k+1}} = S_1$ the isomorphism theorem yields $S_{k+1}/S_1 A$-isomorphic to $S_{k+1}p = S_k$. Thus $\dim S_{k+1} = \dim S_k + \dim S_1$ and $\dim S_1$ is finite by hypothesis; an obvious induction argument establishes $\dim S_{k+1} = (k+1) \dim S_1 = (k+1) \dim \ker p$ as desired.

Next, observe that if $f(\lambda)$, $g(\lambda)$ are relatively prime then $\ker fg = \ker f + \ker g$. For surely $\ker f + \ker g \subset \ker fg$ holds; consequently, write $1 = fh + gk$ for h, k in A so that x in $\ker fg$ can be written as $x = xfh + xgk$ where $xfh \in \ker g$ and $xgk \in \ker f$ is obvious. This shows $\ker f + \ker g = \ker fg$; finally if $x \in (\ker f) \cap (\ker g)$ then $x = xfh + xgk = 0$ and so the sum is direct. The desired conclusion is now an obvious consequence of the preceding results and the unique factorization in A.
References

5. ———, *Sur l'espace lineaire avec derivation*, Studia Math. 16 (1957), 113–123.

University of Virginia