ON THE EXTENSIONS OF CONTINUOUS FUNCTIONS FROM DENSE SUBSPACES

R. BLEFKO AND S. MRÓWKA

Recently Taimanov and McDowell have been concerned with the question: when can a continuous function from a space X to a compact space Y be extended to a space αX in which X is dense? An important result, e.g., obtained by Taimanov is the following

Theorem. Let X be dense in the T_1-space αX. Then in order that a continuous function f from X into a compact space Y have a continuous extension $f^*: \alpha X \rightarrow Y$ it is necessary and sufficient that for each two disjoint closed sets F_1 and F_2, $f^{-1}[F_1]$ and $f^{-1}[F_2]$ have disjoint closures in αX.

The following theorems provide information about the possibility of extending functions into spaces which are realcompact instead of compact.

Theorem A. Let αX be a T_1-space in which X is dense, and let f be a continuous function from X into a realcompact space Y. Then f has a continuous extension $f^*: \alpha X \rightarrow Y$ if and only if for every countable family $\{F_n\}$ of closed sets in Y such that $\bigcap_n F_n = \emptyset$, $\bigcap_n \text{cl}_{\alpha X} f^{-1}[F_n] = \emptyset$.

Proof. Sufficiency. We suppose some $f: X \rightarrow Y$ has no extension to all of αX. Now Y, being realcompact, is embeddable as a closed copy in R^m for some cardinal m (R denotes the reals; see [3, p. 160]) and we look on Y as being this subset of R^m. Consider the space $(R^m)^* = (R \cup \{\infty\})^m$ where $R \cup \{\infty\}$ is the one-point compactification of R. Then $(R^m)^*$ is compact. Then $f: X \rightarrow (R^m)^*$ also and this function does admit an extension $f^*: \alpha X \rightarrow (R^m)^*$. To show this we use Taimanov's result quoted above: Let F_1 and F_2 be disjoint closed subsets of $(R^m)^*$ and set $F'_1 = F_1 \cap R^m$ and $F'_2 = F_2 \cap R^m$. Then F_1, F_2 are disjoint in R^m and by hypothesis, $\text{cl}_{\alpha X} f^{-1}[F'_1] \cap \text{cl}_{\alpha X} f^{-1}[F'_2] = \emptyset$. But $f^{-1}[F_i] = f^{-1}[F'_i], i = 1, 2$ since f maps into R^m. Thus there exists a continuous extension $f^*: \alpha X \rightarrow (R^m)^*$. But then for some $p_0 \in \alpha X - X$, $f^*(p_0)$ has ∞ for at least one coordinate. Consider now the sets $F_n = (R - (-n, n))^m$, closed in the product R^m. Then $\bigcap_n F_n = \emptyset$ but $p_0 \in \bigcap_n \text{cl}_{\alpha X} f^{-1}[F_n]$.

Received by the editors May 24, 1965.

\footnote{The authors were supported by National Science Foundation Grant No. GP-1843.}
NECESSITY. Suppose \(f: X \to Y \) has an extension \(f^*: \alpha X \to Y \). Let \(\{ F_n \} \) be a family of closed sets with \(\bigcap_n F_n = \emptyset \) and suppose that there is a \(p_0 \) in \(\bigcap_n \text{cl}_x f^{-1}[F_n] \). Then
\[
p_0 \in \bigcap_n \text{cl}_x f^{-1}[F_n] \subseteq \bigcap_n f^{-1}[\overline{F_n}] = \bigcap_n f^{-1}[F_n] = f^{-1}[\bigcap_n F_n] = \emptyset.
\]

THEOREM B. Let \(\alpha X \) be a \(T_1 \)-space in which \(X \) is dense and let \(f \) be a continuous function from \(X \) into a realcompact space \(Y \). Then \(f \) has a continuous extension \(f^*: \alpha X \to Y \) if and only if for any countable discrete family \(\{ F_n \} \) of closed sets in \(Y \), \(\{ f^{-1}[F_n] \} \) is discrete in \(\alpha X \).

PROOF. SUFFICIENCY. Since \(Y \) is realcompact, \(Y \) is contained as a closed copy in \(R^m \) for some cardinal \(m \), and we consider \(Y \) to be this subset of \(R^m \). Suppose for some \(f: X \to Y \) there exists no continuous extension \(f^*: \alpha X \to Y \). As in the proof of Theorem A, \(f \), considered as a function into \((R^m)^* = (R^\cup \{ \infty \})^m \), has an extension \(f^*: \alpha X \to (R^m)^* \). Then for some \(p_0 \in \alpha X - X \), \(f^*(p_0) \) has \(\infty \) for at least one of its coordinates in \((R^m)^* \). Consider the sets \(I_n = [-n-1, -n] \cup [n, n+1] \) in \(R \) and the closed sets \(F_n = I_n^m \) in \(R^m \). Then every neighbourhood of \(p_0 \) in \(\alpha X \) must intersect infinitely many of the sets \(\{ f^{-1}[F_n] \} \) and also it is true that every neighbourhood of \(p_0 \) in \(\alpha X \) must intersect infinitely many of the sets \(\{ f^{-1}[F_n] \} \) for \(n \) odd or for \(n \) even. Suppose the first. Then since \(\{ F_n : n \text{ odd} \} \) is discrete in \(R^m \), the family \(\{ f^{-1}[F_n] : n \text{ odd} \} \) is discrete in \(\alpha X \), a contradiction.

NECESSITY. Suppose \(f: X \to Y \) has an extension \(f^*: \alpha X \to Y \) and consider any countable discrete family \(\{ F_n \} \) of closed sets in \(Y \). Let \(p_0 \in \alpha X \) and let \(y_0 = f^*(p_0) \in Y \). Then \(y_0 \) has a neighbourhood \(U \) that intersects at most one \(F_n \). Now, if \((f^*)^{-1}[U] \), which is a neighbourhood of \(p_0 \) in \(\alpha X \), intersected \(\text{cl}_x f^{-1}[F_1] \) and \(\text{cl}_x f^{-1}[F_2] \), say, then \(f^*[(f^*)^{-1}[U]] = U \) would intersect \(f^*[\text{cl}_x f^{-1}[F_1]] = F_1 \) and also \(f^*[\text{cl}_x f^{-1}[F_2]] = F_2 \) since \(F_1 \) and \(F_2 \) are closed. This is a contradiction.

THEOREM C. Let \(\alpha X \) be a \(T_1 \)-space in which \(X \) is dense, and let \(f \) be a continuous function from \(X \) into a realcompact space \(Y \). Then \(f \) has a continuous extension \(f^*: \alpha X \to Y \) if and only if

(i) for any two disjoint closed subsets \(F_1 \) and \(F_2 \),
\[
\text{cl}_x f^{-1}[F_1] \cap \text{cl}_x f^{-1}[F_2] = \emptyset;
\]

(ii) for any countable decreasing set of closed subsets \(\{ F_n \} \) such that
\[
\bigcap_n F_n = \emptyset, \quad \bigcap_n \text{cl}_x f^{-1}[F_n] = \emptyset.
\]

PROOF. NECESSITY. Let \(f: X \to Y \) have a continuous extension \(f^*: \alpha X \to Y \).
(i) If for two closed F_1, F_2 in Y, $p_0 \in \text{cl}_{\alpha X} f^{-1}[F_1] \cap \text{cl}_{\alpha X} f^{-1}[F_2]$,
\[
f^*(p_0) \in f^*[\text{cl}_{\alpha X} f^{-1}[F_1]] \cap f^*[\text{cl}_{\alpha X} f^{-1}[F_2]] \\
\subseteq \text{cl}_Y f^*[f^{-1}[F_1]] \cap \text{cl}_Y f^*[f^{-1}[F_2]] \\
= \text{cl}_Y f[f^{-1}[F_1]] \cap \text{cl}_Y f[f^{-1}[F_2]] \\
= \text{cl}_Y F_1 \cap \text{cl}_Y F_2 \\
= F_1 \cap F_2.
\]

(ii) Let $\{F_n\}$ be decreasing, closed and such that $\bigcap_n F_n = \emptyset$. Then if $p_0 \in \bigcap_n \text{cl}_{\alpha X} f^{-1}[F_n]$,
\[
p_0 \in \bigcap_n \text{cl}_{\alpha X} (f^*)^{-1}[F_n] \subseteq \bigcap_n (f^*)^{-1}[-F] \\
= \bigcap_n (f^*)^{-1}[F_n] = (f^*)^{-1} [-\bigcap_n F] = \emptyset.
\]

Sufficiency. Suppose some $f: X \to Y$ has no extension to αX. Again, $Y \subseteq \text{cl}_1 R^n$ for some cardinal m and f considered as a function into $(R^n)^*$ (as in Theorems A and B) has an extension $f^*: \alpha X \to (R^n)^*$. Then there must be a $p_0 \in \alpha X - X$ such that $f^*(p_0)$ has at least one coordinate equal to ∞. As before, we consider the closed sets $F_n = (R - (-n, n))^m$. These are decreasing and $\bigcap_n F_n = \emptyset$ but $p_0 \in \bigcap_n \text{cl}_{\alpha X} f^{-1}[F_n]$.

Notice that in the next theorem we relax the condition that the image space be realcompact.

Theorem D. Let X be dense in the first countable T_1-space αX and let $f: X \to Y$ continuously where Y is completely regular. Then f has a continuous extension $f^*: \alpha X \to Y$ if and only if for any two disjoint closed sets F_1 and F_2,
\[
\text{cl}_{\alpha X} f^{-1}[F_1] \cap \text{cl}_{\alpha X} f^{-1}[F_2] = \emptyset.
\]

Proof. Sufficiency. Suppose $f: X \to Y$ has no extension. Then arguing as before, f does have an extension $f^*: \alpha X \to \beta Y$ and there must be a $p_0 \in \alpha X - X$ such that $f^*(p_0) \in \beta Y - Y$. (Here βY denotes the maximal Stone-Čech compactification of Y which exists if and only if the space Y is completely regular. See [3].)

Let $\{p_n\}$ be a sequence in X with $p_n \to p_0$. We can then select a subsequence $\{x_n\} \subset \{p_n\}$ such that the points in $\{f^*(x_n)\}$ are distinct and $f^*(x_n) \to f^*(p_0)$. Consider the closed sets
\[
F_1 = \{f^*(x_1), f^*(x_3), \ldots \}
\]

and
Then \(F_1 \cap F_2 = \emptyset \), but \(\text{cl}_{aX} f^{-1}[F_1] \cap \text{cl}_{aX} f^{-1}[F_2] \neq \emptyset \).

Necessity. Let \(f \) have an extension \(f^*: aX \to Y \) and suppose for two closed \(F_1, F_2, p_0 \in \text{cl}_{aX} f^{-1}[F_1] \cap \text{cl}_{aX} f^{-1}[F_2] \). We then have that

\[
\begin{align*}
 f^*(p_0) \in f^*[\text{cl}_{aX} f^{-1}[F_1]] \cap f^*[\text{cl}_{aX} f^{-1}[F_2]] \\
 \subseteq \text{cl}_Y f^*[f^{-1}[F_1]] \cap \text{cl}_Y f^*[f^{-1}[F_2]] \\
 = \text{cl}_Y F_1 \cap \text{cl}_Y F_2 = F_1 \cap F_2,
\end{align*}
\]

so their intersection is nonempty.

Added in proof. After this paper was submitted for publication, the authors have discovered that Theorem A has also been proved by R. Engelking [4]. On the other hand, our method can be used to prove the following generalization of Theorems A and C (the terminology is that of [5] and [6]).

Theorems A’ & C’. Let \(E \) be a Hausdorff space having an \(E \)-completely regular compactification \(E^* \) such that every point of \(E^* - E \) has a local base of cardinality \(m \). Let \(Y \) be \(E \)-compact, let \(X \) be a dense subspace of a \(T_1 \)-space \(aX \) and let \(f \) be a continuous function with \(f: X \to Y \). Then the following are equivalent:

(a) \(f \) admits a continuous extension \(f^*: aX \to Y \);

(b) for every class \(\mathcal{K} \) of closed subsets of \(Y \) with \(\text{card} \ \mathcal{K} \leq m \) and \(\bigcap \mathcal{K} = \emptyset \) we have \(\bigcap \{ \text{cl}_{aX} f^{-1}[F]: F \in \mathcal{K} \} = \emptyset \);

(c) for every two disjoint closed subsets \(F_1 \) and \(F_2 \) of \(Y \) we have \(\text{cl}_{aX} f^{-1}[F_1] \cap \text{cl}_{aX} f^{-1}[F_2] = \emptyset \) and for every submultiplicative class \(\mathcal{K} \) of closed subsets of \(Y \) with \(\text{card} \ \mathcal{K} \leq m \) and \(\bigcap \mathcal{K} = \emptyset \) we have \(\bigcap \{ \text{cl}_{aX} f^{-1}[F]: F \in \mathcal{K} \} = \emptyset \).

(A class \(\mathcal{K} \) of sets is called submultiplicative provided that for every \(F_1, F_2 \in \mathcal{K} \) there is an \(F_3 \in \mathcal{K} \) with \(F_3 \subseteq F_1 \cap F_2 \).)

Note that the nontrivial part of Theorem A’ and C’ [that (c) implies (a)] can be easily derived from the statement at the end of §2 in [6]. Indeed, by the first part of (c) (and by the quoted Taimanov theorem) we infer that \(f \) admits a continuous extension \(f^*: aX \to \beta_{E^*} Y \).

Then, using the second part of (c) and the quoted statement of [6], we obtain that actually \(f^*[aX] \subset Y \).

Finally, let us call a subset \(F \) of a space \(Y \) \(E \)-closed provided that there exists a continuous function \(f: Y \to E^n \), where \(n \) is finite, and a closed subset \(A \) of \(E^n \) with \(F = f^{-1}[A] \). Theorems A’ & C’ remain true if the phrase “closed subsets of \(Y \)” is replaced by “\(E \)-closed subsets of \(Y \)”.
Bibliography

University of Rhode Island and
Pennsylvania State University