1. Introduction. The purpose of the paper is to prove the following:

Theorem 1. Suppose G is a finite group which admits an automorphism σ of order p^n, where p is an odd prime, such that σ fixes only the identity element of G.

(a) If G is solvable, then $h(G) \leq n$.

(b) If G is π-solvable, then $l_\pi(G) \leq \lfloor (n+1)/2 \rfloor$.

Furthermore, both these inequalities are best-possible.

Here $h(G)$, the Fitting height (also called the nilpotent length) of G, is as defined in [7]. $l_\pi(G)$, the π-length of G, is defined in an obvious analogy to the definition of p-length in [2].

For $p=2$, Gorenstein and Herstein [1] obtained Theorem 1 if $n \leq 2$, and Hoffman and Shult both obtained Theorem 1 provided that a Sylow q-group of G is abelian for all Mersenne primes q which divide the order of G. Shult, who considers a more general situation of which Theorem 1 is a special case, recently extended his results to include all primes, but his bound on $h(G)$ is not best-possible in the special case of Theorem 1. It also should be noted that Thompson [7] obtained a bound for $h(G)$ under a much more general hypothesis than that considered in the other papers mentioned.

Theorem 1 is a consequence of

Theorem 2. Let G be a finite group admitting a fixed-point-free automorphism σ of order p^n, p an odd prime, and let H be a normal Hall subgroup of G such that H contains its centralizer in G. Then the automorphism of G/H induced by σ^{p^n-1} is the identity automorphism.

Here again, the papers of Hoffman and Shult imply Theorem 2 if either p is not a Fermat prime or a Sylow 2-group of G is abelian. Thus what is new about the present paper is that no condition is imposed upon the Sylow 2-groups of G if p is a Fermat prime.

Received by the editors February 15, 1966.
The restriction to odd primes is essential since Theorem 2 is false for \(p = 2, n > 2 \). To see this let \(q = 2^m - 1 \) be some Mersenne prime and let \(M \) be the nonabelian group of exponent \(q \) and order \(q^3 \). \(M \) admits a fixed-point-free automorphism \(\sigma \) of order \(2^{m+1} \). Let \(K \) be the semidirect product of \(M \) and the group generated by \(\sigma^2 \), and choose \(F \) to be any finite field such that (1) the characteristic of \(F \) is not 2 or \(q \), and (2) \(F \) is a splitting field for \(K \). There is a faithful irreducible representation \(\rho \) of \(K \) over \(F \) such that \(\rho(\sigma^2) \) has no nonzero fixed vectors. Now for \(x \in M \), define \(\rho^*(x) \) by \(\rho^*(x) = \rho(x) \oplus \rho(x^\sigma) \). Then choose \(\rho^*(\sigma) \) to be

\[
\begin{pmatrix}
0 & \rho(\sigma^2) \\
I & 0
\end{pmatrix}
\]

\(\rho^*(\sigma) \) is of order \(2^m+1 \) and \(\rho^*(\sigma)^{-1} \rho^*(x) \rho^*(\sigma) = \rho^*(x^\sigma) \). Thus \(\rho^* \) is a faithful representation of the semidirect product of \(M \) and \(\langle \sigma \rangle \), the group generated by \(\sigma \). If \(H \) is the space on which \(\rho^*(M(\sigma)) \) operates, then \(\rho^*(\sigma) \) induces a fixed-point-free automorphism of the semidirect product \(HM \). This automorphism is of order \(2^{m+1} \) on both \(HM \) and \(HM/H \).

2. Proofs. First we need some elementary number theoretic results which we state without proof.

(2.1) Lemma. Let \(p = 2^s + 1 \) be an odd Fermat prime. Then \(p^k \) divides \(2^n - 1 \) if and only if \(2^n p^{k-1} \) divides \(n \).

(2.2) Lemma. Suppose \(p = 2^s + 1 \) is an odd Fermat prime and \(p^s = 2^b + 1 \) for some positive integers \(a, b \). Then \(a = 1, b = s \) unless \(p = 3 \), in which case \(a = 2, b = 3 \) is also possible.

We now proceed to prove Theorem 2 by induction on the order of \(G \). \(H \) is a characteristic subgroup of \(G \) so \(H \) certainly admits \(\sigma \). By induction, if \(G_1 \) is a proper subgroup of \(G \) such that \(G_1 \) admits \(\sigma \) and \(G_1 \geq H \), then \(\sigma^{p_n-1} \) must be the identity on \(G_1/H \). According to [2, Theorem C], this implies that

(1) \(G/H \) is a \(q \)-group for some prime \(q \).
(2) Either \(\phi(G/H) = 1 \) or \((G/H)' = \phi(G/H) = Z(G/H) \).
(3) \(\langle \sigma \rangle \) is faithfully and irreducibly represented by the automorphisms induced on \((G/H)/\phi(G/H) \).

(Here \(\phi(G) \) and \(Z(G) \) denote the Frattini subgroup and center, respectively, of \(G \).) Now there must be a Sylow \(q \)-group \(M \) of \(G \) such that \(M \) admits \(\sigma \). Clearly \(G = HM \) and \(M \cong G/H \). Thus we must show that \(\sigma^{p_n-1} \) fixes \(M \) elementwise. For convenience we set \(\sigma^{p_n-1} = \sigma' \).

Now suppose \(x \) is an element of \(M \) not fixed by \(\sigma' \). Let \(y = (x, \sigma') \).
= x^{-1}x^{a'} \neq 1. Now since \(H \) contains its centralizer in \(G \), it follows that there is a Sylow \(r \)-group \(K \) of \(H \) such that \(M \) normalizes \(K \), \(K \) admits \(\sigma \), and \((y, K) \neq 1 \). Now let \(N \) be the centralizer of \(K \) in \(M \), and consider the group \(KM/N \). This group satisfies the hypothesis of Theorem 2, and so, if \(H \neq K \), we must have \(\sigma' \) is the identity on \(M/N \). But \(N \) is a proper subgroup of \(M \) (since \(y \in N \)) so that \(\sigma' \) must fix \(N \) elementwise. Since \(p \) cannot divide the order of \(M \), this would imply that \(\sigma' \) is the identity on \(M \).

Thus we assume that \(H \) is an \(r \)-group for some prime \(r \). Now \(G/\phi(H) \) satisfies the hypothesis of the theorem, so by induction we may assume that \(\phi(H) = 1 \). From now on we consider \(H \) as a vector space over a field \(F \) of characteristic \(r \) and we consider \(M \langle \sigma \rangle \), the semidirect product of \(M \) and \(\langle \sigma \rangle \), as a linear group operating on \(H \). Since \(\sigma \) is fixed-point-free on \(G \), \(\sigma \), as a linear transformation, cannot have 1 as an eigenvalue. Now extending the field \(F \) does not change the structure of \(\langle \sigma \rangle M \) nor the eigenvalues of \(\sigma \). Accordingly we consider \(\langle \sigma \rangle M \) as a linear group over a field \(F \) of characteristic \(r \), and we assume that \(F \) is a splitting field for \(\langle \sigma \rangle M \).

Now let \(V \) be an irreducible \(F - \langle \sigma \rangle M \) submodule such that \((M, \sigma^{p^{n-1}})\) is not the identity on \(V \). Next decompose \(V \) into the sum \(V = V_1 \oplus V_2 \oplus \cdots \) of minimal characteristic \(F-M \) submodules \(V_i \). Since \(V \) is irreducible, \(\sigma \) must permute the \(V_i \) transitively. Let \(\tau = \sigma^{p^m} \) be the first power of \(\sigma \) which fixes all the \(V_i \), and number the \(V_i \) so that \(V_i \sigma = V_{i+1} (\mod p^m) \). Next let \(N \) be the restriction of \(M \) to \(V \), \(K_i \) the kernel of the representation of \(N \) afforded by the module \(V_i \), and \(Q_i = N/K_i \). Since \(Z(Q_i) \) is represented by a scalar matrix on \(V_i \), \(\tau \) must fix \(Z(Q_i) \) elementwise. Now \(m = 0 \) would imply that \(\tau = \sigma \), \(V = V_1 \), and \(K_1 = 1 \). Since \(\sigma \) must induce a fixed-point-free automorphism of \(Z(N) \), this implies that \(m > 0 \).

Now the argument in [5, pp. 704-708] shows that 1 must be an eigenvalue of \(\sigma \) unless \(p^{n-m} = q^{d+1} \), \(Q_i \) is of order \(q^{2d+1} \), and \(Q_i \) is an extra-special \(q \)-group. We now proceed to finish the proof of Theorem 2 by showing that under the conditions just stated, \(\sigma \) cannot be fixed-point-free on \(N' \).

First \(p^{n-m} = q^{d+1} \) implies that \(q = 2 \) (since \(p \) is odd) and \(p \) is a Fermat prime \(= 2^s + 1 \). Thus either \(d = s, n-m = 1 \) or, if \(p = 3 \), we could have \(d = 3, n-m = 2 \). In any event \(d \) is the smallest positive integer such that \((2^{2d} - 1) \) is divisible by \(p^{n-m} \). Now \(\sigma^{p^{n-1}} \) is not the identity on any \(V_i \) since \((M, \sigma^{p^{n-1}})\) is not the identity on \(V \). For the same reason \(N/N' \) is a faithful \(GF(q) - \langle \sigma \rangle \) module and \(Q_i/Q'_i \) is a faithful \(GF(q) - \langle \tau \rangle \) module. But since \(M/\phi(M) \) is an irreducible module for \(\langle \sigma \rangle \) and since \(Q_i/Q'_i \) is of order \(2^{2d} \), it follows that \(N/N' \)
and Q_i/Q'_i are irreducible modules for $\langle \sigma \rangle$ and $\langle \tau \rangle$, respectively. From (2.1) it follows that the smallest integer k such that p^n divides $(2^k - 1)$ is $k = 2sp^{n-1} = 2dp^m$. Thus N/N' is of order 2^{2dp^m}. Now $Q_i = N/K_i$ and so Q_i/Q'_i is operator isomorphic as a $\langle \tau \rangle$-module to $N/(K_iN')$.

(2.3) **Lemma.** (1) For all i, k such that $1 \leq i \leq p^m$, $1 \leq k \leq p^m$,

\[
\left(\bigcap_{j=i}^{i+k-1} K_jN' \right) / N'
\]

is of order $2^{2d(p^m-k)}$.

(2) For all i, k such that $1 \leq i \leq p^m$, $1 \leq k < p^m$,

\[
\left(\bigcap_{j=i}^{i+k-1} K_jN' \right)(K_{i+k}N') = N.
\]

Proof. Throughout, the indices j on the subgroups K_j are to be taken modulo p^m. Now if $k = 1$, then

\[
| K_iN'/N' | = | N/N' | / | N/K_iN' | = 2^{2d(p^m-1)}.
\]

Now assume the first assertion of the lemma is true for a given $k < p^m$. Now

\[
\left(\bigcap_{j=i}^{i+k-1} K_jN' \right)K_{i+k}N'/K_{i+k}N'
\]

is a $\langle \tau \rangle$-submodule of $N/K_{i+k}N'$. Since $N/K_{i+k}N'$ is an irreducible $\langle \tau \rangle$-module, we conclude that either the second part of the lemma holds or

\[
\bigcap_{j=i}^{i+k-1} K_jN' \leq K_{i+k}N'.
\]

In the latter case we certainly have

\[
\bigcap_{j=i}^{i+k-1} K_jN' \leq \bigcap_{j=i+1}^{i+k} K_jN' = \left(\bigcap_{j=i}^{i+k-1} K_jN' \right)'.
\]

Since

\[
N > \left(\bigcap_{j=i}^{i+k-1} K_jN' \right) > N'
\]

from (1), this implies that

\[
\left(\bigcap_{j=i}^{i+k-1} K_jN' \right) / N'
\]
is a nontrivial proper \(\langle \sigma \rangle \)-submodule of the irreducible \(\langle \sigma \rangle \)-module \(N/N' \). This contradiction establishes the second part of the lemma for the given value of \(k \).

But then

\[
\frac{N/K_{i+k}N'}{N/K_{i+k}N'} \cong \left(\bigcap_{j=i}^{i+k-1} K_jN' \right) / \left(\bigcap_{j=i}^{i+k} K_jN' \right).
\]

But since

\[
\left| \left(\bigcap_{j=i}^{i+k-1} K_jN' \right)/N' \right| = 2^{2d(p^m-k)} \quad \text{and} \quad \left| N/K_{i+k}N' \right| = 2^{2d},
\]

this implies that

\[
\left| \left(\bigcap_{j=i}^{i+k} K_jN' \right)/N' \right| = 2^{2d(p^m-k-1)}.
\]

Thus part (1) of the lemma is proved for \(k+1 \). Then, by induction, the lemma is proved.

Now let \(L_i = \bigcap_{j \neq i} K_jN' \) for all \(i \), \(1 \leq i \leq p^m \). From the lemma, \(L_i K_i = L_i K_i N' = N \) for all \(i \). Also since \(L_i^e = L_{i+1} \pmod{p^m} \), \(L_1 L_2 \cdots L_{p^m}/N' \) is a nontrivial \(\langle \sigma \rangle \)-module. Thus \(L_1 L_2 \cdots L_{p^m} = N \). Our goal now is to show that \(N' \) is the direct product

\[
L_1 \times L_2 \times \cdots \times L_{p^m}.
\]

To do this, we first need

(2.4) **Lemma.** \((L_i, L_k) = 1 \) if \(i \neq k \).

Proof. Suppose \((x, y) \neq 1 \) for \(x \in L_i \), \(y \in L_k \). Choose \(t \) such that \((x, y)\) is not the identity on \(V_t \). Now at least one of \(L_i \) and \(L_k \) is contained in \(K_i N' \). Without loss of generality assume that \(L_i \subseteq K_i N' \). Therefore \(x = gh \) where \(g \in K_i \), \(h \in N' \). Now \(N' \subseteq Z(N) \). Therefore \((gh, y) = (g, y) \). But \(g \) is the identity on \(V_t \) which implies that \((g, y)\) is also the identity on \(V_t \). This proves the lemma.

As an immediate consequence of the lemma we have \(N' = L_1 \times L_2 \times \cdots \times L_{p^m} \). Now as in the proof just given, \(L_i \subseteq K_i N' \) implies that \((L_i, N)\) is the identity on \(V_i \). Since \(N \) is faithfully represented on \(V \), this implies that \(L_i' \) is faithfully represented on \(V_i \). Thus

\[
\left| L_i' \right| = \left| Q_i' \right| = 2 \quad \text{for all } i.
\]

Now suppose \(L_i' \cap \Pi_{j \neq i} L_j' \neq 1 \). Then we would have \(\Pi_{j \neq i} L_j' \) not the identity on \(V_i \). But \(j \neq i \) implies that \(L_j' \subseteq (L_j, N) \) is the identity on \(V_i \). Thus \(L_i' \cap \Pi_{j \neq i} L_j' = 1 \) for all \(i \). This implies that
\[N' = L'_1 \times L'_2 \times \cdots \times L'_p^n \]

and thus \(|N'| = 2^n p^n\). Since \(|N'| \not\equiv 1 \pmod{p}\), \(N'\) cannot have a fixed-point-free automorphism whose order is a power of \(p\). This concludes the proof of Theorem 2.

The proof of Theorem 1 now follows by induction on the order of \(G\). First suppose \(G\) has two distinct minimal \(\sigma\)-admissible normal subgroups \(H_1, H_2\). Then \(G\) is isomorphic to a subgroup of the direct product of \(G/H_1\) and \(G/H_2\) and both \(G/H_1\) and \(G/H_2\) satisfy the theorem. It then follows that \(G\) would satisfy the theorem.

Thus, for part (a) of the theorem, we may assume that the Fitting group \(F_1(G)\) is a \(q\)-group for some prime \(q\). Then \(O_{qq'}(G)\) satisfies the conditions of Theorem 2. Therefore \(\sigma^{n-1}p\) is the identity on \(O_{qq'}(G)/F_1(G)\). By [4, Lemma 4], this implies that \(\sigma^{n-1}p\) is the identity on \(G/F_1(G)\). Then, by induction, we have

\[h(G) = 1 + h(G/F_1(G)) \leq 1 + (n - 1) = n. \]

For part (b) of Theorem 1, we may assume that \(O_r(G) = 1\). Then by one application of Theorem 2, \(\sigma^{n-1}p\) is the identity on \(O_{rr'}(G)/O_r(G)\), and by a second application, \(\sigma^{n-2}p\) is the identity on \(O_{rr'}(G)/O_{rr'}(G)\). Thus, again using [4, Lemma 4], \(\sigma^{n-2}p\) is the identity on \(G/O_{rr'}(G)\).

Induction now implies that

\[l_r(G) = 1 + l_r(G/O_{rr'}(G)) \leq 1 + [(n - 1)/2] = [(n + 1)/2]. \]

All that remains now is to show that the inequalities in Theorem 1 are best-possible. For part (a), this follows from examples constructed by Shult [5, Theorem 5]. For part (b), however, Shult’s construction has to be modified somewhat. Working by induction, Shult assumes that \(G_k\) is a solvable group of Fitting height \(k\) which admits a fixed-point-free automorphism of order \(p^k\). Then if \(q_k\) is any prime such that \(q_k = 1 \pmod{p}\) and \(q_k\) does not divide the order of \(G\), Shult proceeds to construct a new group \(G_{k+1}\) such that \(F_1(G_{k+1}) = q\)-group, \(G_{k+1}/F_1(G_{k+1})\) is isomorphic to \(G_k\), \(h(G_{k+1}) = k + 1\), and \(G_{k+1}\) admits a fixed-point-free automorphism of order \(p^{k+1}\). A close look at Shult’s procedure reveals that it is only necessary that \(q_k\) does not divide the order of \(F_1(G)\). Thus if \(q, r\) are distinct primes such that \(q \equiv r \equiv 1 \pmod{p}\), Shult’s procedure can be used to construct groups \(G_k\) with the following properties.

(1) \(G_k\) is a \(q, r\)-group.
(2) \(F_1(G_k)\) is either a \(q\)- or an \(r\)-group.
(3) \(G_k\) admits a fixed-point-free automorphism of order \(p^k\).
(4) \(h(G_k) = k\).
It now follows that \(l_q(G_k) \) and/or \(l_r(G_k) \) is equal to \([k+1]/2\]. Thus the inequality in part (b) is best-possible.

References

University of Alberta, Edmonton