A COMBINATORIAL PROBLEM IN THE
k-ADIC NUMBER SYSTEM

B. LINDSTROM AND H.-O. ZETTERSTRÖM

1. Introduction. Let \mathbb{N} denote the set of all nonnegative integers. The elements in \mathbb{N} are represented in the k-adic number system by strings of integers as $a_1a_2 \cdots a_p$, $0 \leq a_i \leq k - 1$. Define a multivalued function on \mathbb{N} by

$$\Gamma(a_1a_2 \cdots a_p) = \{a_1 \cdots (a_v - 1) \cdots a_p; 1 \leq v \leq p, a_v \geq 1\}$$

and $\Gamma(0) = \emptyset$, the null set. Put $\alpha_k(a_1a_2 \cdots a_p) = \sum a_v$, $v = 1, 2, \cdots, p$ and $\alpha_k(S) = \sum \alpha_k(n_i)$, $n_i \in S$ if $S \subseteq \mathbb{N}$.

S is said to be closed if $S \subseteq \mathbb{N}$ and $\Gamma S \subseteq S$. $S_n = \{0, 1, \cdots, n-1\}$ is closed. The problem is to determine the maximum of $\alpha_k(S)$ when S ranges over all closed S with $|S| = n$, i.e. with n elements. Our main result (Theorem 1) is that the maximum is $\alpha_k(S_n)$.

If we put $B_k(n) = \alpha_k(S_n)$, we get as a corollary

$$B_k(m_1 + m_2 + \cdots + m_k) \geq \sum_{r=1}^{k} B_k(m_r) + \sum_{r=2}^{k} (v-1)m_r,$$

$$m_1 \geq m_2 \geq \cdots \geq m_k \geq 0.$$

It is interesting that Theorem 1 can be derived from this inequality. We have no independent proof of it, except for $k = 2$.

The asymptotic properties of the function $A_k(n) = B_k(n+1)$ were studied in [1] by R. Bellman and H. N. Shapiro. $A_2(n)$ appeared in connection with determinants in [2]. A result in that paper will be extended in our Theorem 2. We also note that there is some connection with the "detecting sets" studied in [3]. In fact, it was an attempt to extend the results in [3] which gave rise to the present problem.

2. Main results. In this section we shall derive the following theorem:

Theorem 1. If S is closed and $|S| = n$, then $\alpha_k(S) \leq \alpha_k(S_n)$.

To simplify notations we shall omit the index "k" in the proofs.

Putting 0's in front of a string does not alter the integer represented by the string. Hence we can assume that all integers in S are represented by strings of the same length $p = p(S)$.

Received by the editors May 19, 1966.
Given $S \subseteq N$, we shall define a set $S^c \subseteq N$, called the compression of S. Let S_ν denote the set of all integers $n \in S$ for which $\alpha(n) = \nu$. Let S^c_ν denote the set of the $|S_\nu|$ smallest nonnegative integers n for which $\alpha(n) = \nu$. Then define S^c as the union of the sets S^c_ν, $\nu = 0, 1, 2, \cdots$. We note that

\begin{align}
(2.1) \quad |S^c| &= |S|, \\
(2.2) \quad \alpha(S^c) &= \alpha(S).
\end{align}

We shall prove a lemma:

Lemma 1. If $p(S) = 2$ and S is closed, then S^c is closed.

Proof. It is instructive to imagine the integers $a_1a_2 \in S$ as points with coordinates (a_1, a_2) in a 2-dimensional coordinate-system.

If $a_1 \neq 0$ and $a_2 \neq 0$ for every $a_1a_2 \in S_\nu$ (or S^c_ν), then

\begin{equation}
|T_{S_\nu}| \geq |S_\nu| + 1 \quad \text{and} \quad |T_{S^c_\nu}| = |S^c_\nu| + 1.
\end{equation}

This holds surely when $\nu \geq k$.

If there is one and only one integer $a_1a_2 \in S_\nu$ (or S^c_ν) for which a_1 or $a_2 = 0$, then we find

\begin{equation}
|T_{S_\nu}| \geq |S_\nu| \quad \text{and} \quad |T_{S^c_\nu}| = |S^c_\nu|.
\end{equation}

From (2.3) and (2.4) we get in both cases

\begin{equation}
|T_{S^c_\nu}| \leq |T_{S_\nu}|.
\end{equation}

If there are two integers a_1a_2 for which a_1 or $a_2 = 0$ then $S_\nu = S^c_\nu$ and (2.5) holds with equality.

S is closed if and only if $T_{S_\nu} \subseteq S_{\nu-1}$ for $\nu = 1, 2, \cdots$. Then we find by (2.1) and (2.5)

\begin{equation}
|T_{S^c_\nu}| \leq |S^c_{\nu-1}|, \quad \nu = 1, 2, \cdots.
\end{equation}

From this inequality it follows $T_{S^c_\nu} \subseteq S_{\nu-1}$ for $\nu = 1, 2, \cdots$. Hence S^c is closed and the lemma is proved.

We shall prove a second lemma

Lemma 2. Assume $p = p(S) \geq 3$ for $S \subseteq N$, and that $b_1b_2 \cdots b_p \in S$, $a_i = b_i$ and $a_1 \cdots a_{i-1}a_{i+1} \cdots a_p < b_1 \cdots b_{i-1}b_{i+1} \cdots b_p$ implies $a_1 \cdots a_p \in S$ for $i = 1, 2, \cdots, p$. Then $b_1b_2 \cdots b_p \in S$, $a_1a_2 \cdots a_p < b_1b_2 \cdots b_p$ and $a_1 + \cdots + a_p \leq b_1 + \cdots + b_p$ implies $a_1a_2 \cdots a_p \in S$.

Proof. We can assume $a_\nu \neq b_\nu$, $1 \leq \nu \leq p$. Then $a_1 < b_1$, since $a_1a_2 \cdots a_p < b_1b_2 \cdots b_p$. If there is $s \neq 1$ such that $a_s < b_s$, we get
From these inequalities we find \(a_1a_2 \cdots a_p \in S \) if \(b_1b_2 \cdots b_p \in S \).

Next we assume \(a_1 > b_1 \), for \(v > 1 \). Since \(a_1 + \cdots + a_p \leq b_1 + \cdots + b_p \), we get \(b_1 - a_1 \geq (a_2 - b_2) + \cdots + (a_p - b_p) \geq p - 1 \geq 2 \). Hence

\[
b_1b_2 \cdots b_p > (b_1 - 1)a_2b_3 \cdots b_p > (b_1 - 2)a_2 \cdots a_p \geq a_1a_2 \cdots a_p.
\]

Then from \(b_1b_2 \cdots b_p \in S \) we conclude \(a_1a_2 \cdots a_p \in S \).

Proof of Theorem 1. The proof is by induction over \(p = \rho(S) \).

If \(p = 1 \), \(S = S_1 \) and the theorem is true. Next we assume \(p = 2 \). The compressed set \(S^c \) is formed from \(S \). If \(S^c \neq S_1 \) let \(a_1a_2 \) be the smallest nonnegative integer not in \(S^c \) and let \(b_1b_2 \) be the largest integer in \(S^c \). Then we find \(a_1a_2 < b_1b_2 \), \(a_1 < b_1 \), \(a_2 > b_2 \), for \(S^c \) is closed by Lemma 1. We get even

\[
(2.6) \quad a_1 + a_2 > b_1 + b_2.
\]

For if \(a_1 + a_2 \leq b_1 + b_2 \), we can put \(c = a_1 + a_2 - b_2 \). Then \(a_1 < c \leq b_1 \) and \(cb_2 \in S^c \) for \(S^c \) is closed. Hence \(a_1a_2 \in S^c \), since \(a_1 + a_2 = c + b_2 \) and \(S^c \) is compressed. But \(a_1a_2 \in S^c \), and (2.6) follows by the contradiction.

If \(b_1b_2 \) is deleted from \(S^c \) and \(a_1a_2 \) is adjoined to it, we get a new closed and compressed set \(T \). We find by (2.1) and (2.2)

\[
\alpha(T) > \alpha(S).
\]

If \(T \neq S_1 \) we can find new integers \(a_1a_2 \) and \(b_1b_2 \). After a finite number of steps we get \(S_1 \), for the sum of all integers in the set is decreased at each step. By (2.7) the theorem holds for \(p = 2 \).

Now we assume that \(T \) is a closed set with \(p = \rho(T) \geq 3 \). For \(a_1 \) fixed we shall consider the set \(T(a_1) = \{ a_2a_3 \cdots a_p; a_1a_2 \cdots a_p \in T \} \). \(T(a_1) \) is closed and \(\rho(T(a_1)) = p - 1 \). By assumption the theorem holds for \(T(a_1) \). Replace \(T(a_1) \) by a set \(S_1; n = |T(a_1)| \), restore the digit \(a_1 \) and take union when \(a_1 = 0, 1, \cdots, k - 1 \). We get \(T_1 \) with \(\alpha(T_1) \geq \alpha(T) \). Note that \(|T(v - 1)| \geq |T(v)| \), since \(T \) is closed. It follows that \(T_1 \) is closed. Define \(T_1(a_2) = \{ a_2a_3 \cdots a_p; a_1a_2 \cdots a_p \in T_1 \} \). \(T_1(a_2) \) is closed. Replace it by a set of type \(S_1 \), restore the digit \(a_2 \) and take union when \(a_2 = 0, 1, \cdots, k - 1 \). \(T_2 \) is closed and \(\alpha(T_2) \geq \alpha(T_1) \). Continue with the digits \(a_3, \cdots, a_p, a_1, a_2, \cdots \). We get a sequence of closed sets: \(T, T_1, T_2, \cdots \), for which

\[
(2.8) \quad \alpha(T_{m+1}) \geq \alpha(T_m), \quad |T_m| = |T|.
\]

If \(T_{m+1} \neq T_m \), then the sum of all integers in \(T_{m+1} \) is smaller than the sum of all integers in \(T_m \). Hence there is an index \(q \) such that

\[
T_q = T_{q+1} = \cdots = T_{q+p}.
\]
Then we find that T_q meets the requirements on S in Lemma 2. If $T_q \neq S_n$, $n = |T|$, we can find a minimal $a_1 a_2 \cdots a_p \in T_q$ and a maximal $b_1 b_2 \cdots b_p \in T_q$ such that $a_1 \cdots a_p < b_1 \cdots b_p$ and, by Lemma 2, $a_1 + a_2 + \cdots + a_p > b_1 + b_2 + \cdots + b_p$.

We delete $b_1 b_2 \cdots b_p$ from T_q and adjoin $a_1 a_2 \cdots a_p$ to the set. Then we get a closed set U for which $\alpha(U) > \alpha(T_q)$. U fulfills the requirements on S in Lemma 2. If $U \neq S_n$ we proceed to a new closed set with larger α-value. After a finite number of steps we get S_n. Hence $\alpha(T) \leq \alpha(S_n)$ and the theorem follows by induction over p.

It is interesting to know that Lemma 1 is not valid for $p(S) > 2$. This is seen by the example:

$$S = \{000, 001, 010, 100, 002, 011, 020, 110, 012, 021, 120\},$$
$$S^c = \{000, 001, 010, 100, 002, 011, 020, 101, 012, 021, 111\}.$$

S is closed, but S^c is not closed since $110 \notin TS^c$ and $110 \in S^c$.

Corollary.

$$B_k(m_1 + \cdots + m_k) \geq \sum_{r=1}^k B_k(m_r) + \sum_{r=2}^k (\nu - 1)m_r,$$

$$m_1 \geq m_2 \geq \cdots \geq m_k \geq 0.$$

$$B_k(mn) \geq mB_k(n) + nB_k(m), \quad m, n \geq 1.$$

Proof. Determine p such that $m_1 \leq k^p$ and consider the set

$$S = \bigcup_{r=1}^k \{a_1 a_2 \cdots a_p(\nu - 1); a_1 a_2 \cdots a_p \in S_{m_r}\}.$$

S is closed and $|S| = m_1 + \cdots + m_k$. The first inequality follows if we determine $\alpha(S)$ and apply Theorem 1.

The second inequality follows if we determine p and q such that $m \leq k^p$ and $n \leq k^q$ and consider the set

$$T = \{a_1 \cdots a_p b_1 \cdots b_q; a_1 \cdots a_p \in S_m, b_1 \cdots b_q \in S_n\}.$$

T is closed, $|T| = mn$, $\alpha(T) = m\alpha(S_n) + n\alpha(S_m)$ and $\alpha(T) \leq \alpha(S_{mn})$.

3. Application to determinants. We assume here that $k = 2$. There is a one-one mapping from nonnegative integers to sets of nonnegative integers:

$$n = 2^n_1 + 2^n_2 + \cdots + 2^n_t \rightarrow N = \{n_1, n_2, \cdots, n_t\},$$

$$n_1 > n_2 > \cdots > n_t \geq 0,$$

$$0 \rightarrow \emptyset.$$
The set-theoretic counterpart to closed set of integers is closed family of sets: \mathcal{F} is a closed family of sets if $N \subseteq \mathcal{F}, M \subseteq N$ implies $M \subseteq \mathcal{F}$.

Put $\alpha(N) = |N|$ and $\alpha(\mathcal{F}) = \sum \alpha(N), N \in \mathcal{F}$. For functions f defined on a closed family \mathcal{F}, we put

\begin{equation}
\hat{f}(N) = \sum_{M \subseteq N} (-1)^{|M|}f(M),
\end{equation}

where the sum is taken over all subsets to N. It is easy to verify $(\hat{f})^\wedge = f$. The proof of the following lemma can also be omitted (cf. \[3, p. 481\]).

Lemma 3. If f is defined on a closed family \mathcal{F}, and $M, N \in \mathcal{F}, M \subseteq N$,

\begin{equation}
\sum_{S \subseteq M} (-1)^{|S|}f(S \cap N) = 0.
\end{equation}

We shall prove the theorem on determinants:

Theorem 2. Let N_1, N_2, \cdots, N_n be an enumeration of all sets in a closed family for which $N_i \cap N_j$ only if $i \leq j$. Then

\begin{equation}
|\hat{f}(N_i \cap N_j)|_{i,j=1}^n = \prod_{i=1}^{n} (-1)^{|N_i|}f(N_i).
\end{equation}

Proof. Multiply the last row in the determinant by $(-1)^{|N_n|}$. If $N_i \subseteq N_n$ we multiply the ith row by $(-1)^{|N_i|}$ and add to the last row. In the last row of the new determinant are all entries 0, except the last one which is $(\hat{f})^\wedge (N_n) = f(N_n)$. The value of the new determinant is $(-1)^{|N_n|}\left|\hat{f}(N_i \cap N_j)|_{i,j=1}^n = f(N_n)\right|\hat{f}(N_i \cap N_j)|_{i,j=1}^{n-1}$. If we note that $N_1 = \emptyset$ and $f(\emptyset) = f(\emptyset)$, the theorem follows by induction.

Example. Let $f(N) = 2^{|N|}$. Then $\hat{f}(M) = (-1)^{|M|}$. It follows that $2^{\alpha(\mathcal{F})}$ equals a determinant with all entries $+1$ or -1. If \mathcal{F} is the family which corresponds to the integers $0, 1, \cdots, n$, we get Theorem 1 in [2].

References

