MEASURES THAT VANISH ON HALF SPACES

BENJAMIN WEISS

I. Introduction. It is well known that if \(f \in L^1(E_n) \) (\(E_n \) denotes real Euclidean \(n \)-space, and all functions are complex valued) has the property that

\[
\int_H f(x) \, dx = 0
\]

for all half spaces \(H \), then \(f(x) = 0 \) a.e. It is natural to conjecture that if (1) holds for all \(H \in \mathcal{H}_n \), where \(\mathcal{H}_n \) is the set of all half spaces of \(E_n \) that exclude the unit sphere, then \(f(x) = 0 \) a.e. in \(\{ |x| = 1 \} \). Recently S. Helgason has proven this assuming the a priori estimate \(f(x) = O(|x|^{-m}) \) for all \(m > 0 \) [5]. The simple example (due to D. J. Newman) of \(f(x) = 1/(x_1 + ix_2)^3 \) if \(|x| \geq 1 \) and zero otherwise, which by Cauchy’s theorem satisfies (1) for all \(H \in \mathcal{H}_2 \), shows that without some assumption the conjecture is in fact false.

The purpose of this note is to characterize explicitly those \(f \in L^1(E_n) \) that satisfy (1) for all \(H \in \mathcal{H}_n \). The second section is devoted to a Paley-Wiener theorem for Hankel transforms which is needed in the proof of the main result. This is found in the final section together with a few concluding remarks. Another version of a Paley-Wiener theorem for Hankel transforms may be found in [4]. I am indebted to the referee for this reference.

II. A P-W Theorem for Hankel transforms. The following theorem of Plancherel and Polya [7] will be used.

\((P) \) If \(f \in L^1(E_n) \) and \(F(y) = \int_{E_n} f(x) \exp(-2\pi i(x, y)) \, dx \) (or \(f \in L^2(E_n) \) and \(F \) its Fourier transform) then \(f \) vanishes a.e. in \(\{ |x| \geq 1 \} \) if and only if \(F \) is an entire function of exponential type \(2\pi \) in every direction.

The Hankel transform of order \(\nu \) is defined by

\[
F(y) = \int_0^\infty f(x) J_\nu(2\pi xy) (xy)^{1/2} \, dx
\]

where \(J_\nu \) is the Bessel function of order \(\nu \) and either \(f \in L^1(0, \infty) \) or \(f \in L^2(0, \infty) \) and the integral is taken as l.i.m. [2, §42].

Received by the editors, December 8, 1964.

1 Presently at the IBM T. J. Watson Research Center, Yorktown Heights, New York.
Lemma 1. If F is given by (2) and $\nu = n - \frac{1}{2}$ ($n = 1, 2, \cdots$) (resp. $\nu = n$) then F (resp. $y^{1/2} F(y)$) is an entire function of exponential type 2π if and only if f (resp. $x^{-1/2} f(x)$) is given by $f_0 + \sum_{j=1}^{\infty} c_j r_j$ where $f_0(x) = 0$ for $x \geq 1$, $r_j(x) = x^{-j/2}$ if $x \geq 1$ and zero otherwise, and the c_j's are constants.

Proof. The proof for $\nu = n$ is just like the proof for $\nu = n - 1/2$ and so we confine our attention to this latter case. Furthermore, it is quite straightforward to reduce the case of $f \in L^1$ to $f \in L^2$ and thus it suffices to prove the lemma assuming that $f \in L^2$.

(a) Suppose first that F has a zero of order $\geq n$ at $y > 0$. Then $G(y) = F(y)/y^n$ is also an entire function of exponential type 2π and setting $g(x) = f(x)/x^n$ we have

$$G(y) = y^{-n+1/2} \int_0^{\infty} g(x) J_n(2\pi xy) x^{n+1/2} d x.$$

If g is considered as a radial function in $L^2(E_{2n+1})$ then except for a factor of 2π the right hand side of (3) gives the Fourier transform of g [1, §2.6]. Applying (P) we conclude that in this case f itself vanishes for $x \geq 1$.

(b) If r_j is inserted for f in (2) the corresponding R_j are given by

$$R_j = y^{j-1} \int_0^{\infty} J_n(2\pi x) x^{-j+1/2} d x + S_j,$$

where S_j is an entire function of exponential type 2π and vanishes at zero to order $\geq n$. From (a) we see that the first term cannot vanish and hence if a suitable linear combination of r_j ($j = 1, 2, \cdots, n$) is subtracted from f we are reduced to the situation in (a), and this completes the proof in one direction. The other direction is immediate since J_n is entire of exponential type 2π, a fact which we used in our assertion about S_j.

The following is an immediate consequence of the lemma and (P).

Corollary. If $f \in L^1(E_n)$ is a radial function ($f(x) = \tilde{f}(|x|)$) and

$$\tilde{F}(y) = 2\pi i^k y^{-n} \int_0^{\infty} \tilde{f}(w/y) J_{k+(n-1)/2}(2\pi w) w^{n/2} d w,$$

then F is entire of exponential type 2π if and only if $f = f_0 + \sum_{j=1}^{\infty} c_j r_j$ ($n \geq 2, k > 0$).

III. The main theorem. Let

$$A_n = \{ f \in L^1(E_n) : (1) \text{ holds for all } H \in \mathfrak{S}_n \}.$$

Observe that (i) A_n is a closed subspace of $L^1(E_n)$, and (ii) A_n is rota-
tion invariant in the sense that \(R \in SO(n) \) and \(f \in A_n \) implies that \(Rf \in A_n(Rf(x) = f(Rx)) \). Denote by \(\sum f_k(|x|, x') \) \((x' = x/|x|)\) the expansion of \(f \) in spherical harmonics, i.e., for fixed \(|x|\), \(f_k \) is a spherical harmonic of degree \(k \) \([1, \S 2.7]\). The main reduction is accomplished by

Lemma 2. If \(f \in L^1(E_n) \) then \(f \in A_n \) if and only if \(f_k \in A_n \) for all \(k \).

Proof. Assume first that \(f \in A_n \), then \(f_k \) may be expressed as

\[
(4) \quad f_k(|x|, x') = \int_{SO(n)} Rf(x) Z_k(Ry', y') dR
\]

where \(y' \) is a fixed unit vector and \(Z_k \) is a zonal harmonic of degree \(k \) \([3, XI]\). Since translation is continuous in the \(L^1 \) norm, one verifies easily that \(R \to Rf \) is a continuous map from \(SO(n) \to L^1(E_n) \) and it then follows from (i) and (ii) that \(f \in A_n \).

Conversely, if \(f_k \in A_n \) for all \(k \) then so are the appropriate Abel means of \(\sum f_k \). Now the Abel means of a continuous function converge \([6]\)\(^2\) and thus by (i) \(f \in A_n \).

Next we identify the Fourier transform of \(A_n \) in

Lemma 3. If \(f \in L^1(E_n) \) and \(F(y) = \int_{E_n} f(x) \exp(-2\pi i(y, x)) dx \) then \(f \in A_n \) if and only if for all \(t \in E_n \) with \(|t| = 1\) we have that \(F_t \) is an entire function of exponential type \(2\pi \) where \(F_t(z) = F(t_1z, t_2z, \cdots, t_nz) \).

Proof. By (ii) it suffices to consider \(t = (1, 0, \cdots, 0) \). Fubini's theorem yields

\[
(5) \quad F_t(z) = \int_{E_1} f(x) \exp(-2\pi izx_1) dx
\]

Since \(F \in A_n \), \(\{ \} \) as a function of \(x_1 \) vanishes for \(|x_1| \geq 1\) and thus \(F_t \) is entire of exponential type \(2\pi \). The converse follows from (5) and (P).

Theorem. If \(f \in L^1(E_n) \) and \(f_k \) are given by (4) then \(f \in A_n \) if and only if

\[
f_k(|x|, x') = f_{k,0}(|x|, x') + \sum_{j=1}^{k-1} c_{k,j}(x')r_{k,j+1}(|x|)
\]

\(^*\) The theorem is given there for real valued continuous functions but may be easily extended to continuous functions with values in a Banach space (here \(L^1 \)).
where $f_{k,0}$ vanishes for $|x| \geq 1$. $c_{k,j}$ are harmonics of degree k (as is $f_{k,0}$ for fixed $|x|$) and r_m is defined in Lemma 1.

Proof. If F_k denotes the Fourier transform of f_k then

$$F_k(|y|, y') = 2\pi^k |y|^{-\frac{n}{2}} \int_0^\infty f_k(w/|y|, y') J_{k+(n-1)/2} (2\pi w) w^{n/2} dw$$

[2, §2.7]. The theorem now follows from Lemma 2-3 and the corollary of Lemma 1.

Helgason's result is obtained upon noticing that his a priori bound on f carries over to f_k and implies that the $c_{k,j}$ are identically zero. The results of this note carry over *mutatis mutandis* to measures, the details are omitted.

Acknowledgment. I thank Professor E. M. Stein for his advice and helpful suggestions in the preparation of this note.

Bibliography

Princeton University