Let X be a compact metric space. It is known that if U is the closed unit ball of $C_r(X)$ (the space of continuous real-valued functions on X under the usual sup norm), a necessary and sufficient condition that U be the closed convex hull of the set of its extreme points is that X be totally disconnected (Bade [1]). It is also known (Phelps [4]) that if $C(X)$ is the space of all continuous complex-valued functions on X under the sup norm, and if U is the closed unit ball of $C(X)$, U is always equal to the closed convex hull of the set of its extreme points (see also Goodner [2]). It is our purpose in this note to obtain information about U in the case of $C(X)$ similar to that obtained for $C_r(X)$.

We make the following notational conventions: D will denote the closed unit disc in the complex plane and B will denote the set of points in D of modulus 1. By E we will mean the set of extreme points of U (the closed unit ball of $C(X)$); E is the set of all elements of U which map X into B. The topological dimension of X as defined in Hurewicz and Wallman [3] will be denoted by $\dim X$.

Our theorem now reads as follows:

Theorem. Let X be a compact metric space. Then the following are equivalent:

1. $\dim X \leq 1$;
2. U is a subset of the convex hull of E.

Proof. We first observe that if f is a continuous map of a topological space Y into D which omits the origin, then there are two continuous maps f_1 and f_2 of Y into B such that $f = (f_1 + f_2) / 2$. We now show that condition (1) implies condition (2). (I am indebted to the referee for strengthening and combining several arguments to give the following proof.)

Let f be in U. By Theorem VI.1 of Hurewicz and Wallman, the origin is an unstable value of f; by Proposition B of the same section, there is a continuous function h_1 which omits the origin such that...

1 Received by the editors March 1, 1966.
1 Research was partially supported by the National Science Foundation under Grant NSF-GP-3509.
(1) If \(|f(x)| \geq 1/3 \), then \(h_1(x) = f(x) \);
(2) if \(|f(x)| < 1/3 \), then \(|h_1(x)| < 1/3 \).

Put \(h_2 = 2f - h_1 \). Then it is clear that \(h_1 \) and \(h_2 \) are in \(U \).

Suppose \(|h_1(x)| > 3\varepsilon > 0 \) for all \(x \in X \). By the same results in [3], there is a continuous function \(g_2 \) such that \(g_2 \) omits the origin and such that

(3) If \(|h_2(x)| \geq \varepsilon \), then \(g_2(x) = h_2(x) \);
(4) if \(|h_2(x)| < \varepsilon \), then \(|g_2(x)| < \varepsilon \).

Put \(g_1 = 2f - g_2 \). Now it is easy to check that \(g_1 \) and \(g_2 \) are in \(U \); moreover \(g_1 \) omits the origin since \(|g_1(x) - h_1(x)| = |g_2(x) - h_2(x)| \leq 2\varepsilon \) for all \(x \in X \). By the remark at the beginning of the proof, \(g_1 \) and \(g_2 \) are in the convex hull of \(E \); hence \(f = (g_1 + g_2)/2 \) is in the convex hull of \(E \).

We now prove that condition (2) implies condition (1). By [3, Theorem VI, §4] it suffices to prove the following: Let \(C \) be a closed subset of \(X \). Then if \(f \) is a continuous map of \(C \) into \(B \), there is an extension of \(f \) to a continuous map of \(X \) into \(B \).

Hence, let \(C \) and \(f \) be as above. Using Tietze's theorem, we can extend \(f \) to a continuous \(\bar{f} \) from \(X \) into \(D \). If condition (2) holds, there is a probability measure \(\mu \) on \(U \) (even one with finite support) such that \(\mu(E) = 1 \) and such that \(L(\bar{f}) = \int L(g) d\mu(g) \) for all \(L \) in the (complex) dual of \(C(X) \). Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence dense in \(C \) and define linear functionals \(L_n \) on \(C(X) \) by \(L_n(h) = h(x_n) \) for \(h \) in \(C(X) \). Then for each \(n \) we have

\[
\bar{f}(x_n) = L_n(\bar{f}) = \int L_n(g) d\mu(g) = \int g(x_n) d\mu(g);
\]

we may divide to obtain

\[
1 = \int_{E} \frac{g(x_n)}{\bar{f}(x_n)} d\mu(g) \quad \text{for all } n.
\]

Since \(|\bar{f}(x_n)| = |g(x_n)| = 1 \) for all \(g \) in \(E \) and since \(\mu \) is a probability measure, it must be the case that

\[
\mu \left\{ g \in E : g(x_n) \neq \bar{f}(x_n) \right\} = 0 \quad \text{for each } n.
\]

Hence,

\[
\mu \left(\bigcup_{n=1}^{\infty} \left\{ g \in E : g(x_n) \neq \bar{f}(x_n) \right\} \right) = 0;
\]
it follows that there is a g^* in E such that $g^*(x_n) = f(x_n) = f(x_n)$ for all n; since $\{x_n\}$ is dense in C, $g^*(x) = f(x)$ for all x in C. This g^* is the desired extension of f and the proof is thereby complete.

Bibliography

Yale University